ZHANG Rui, FENG Ya, YANG Shuo. An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions[J]. Applied Mathematics and Mechanics, 2018, 39(6): 672-680. doi: 10.21656/1000-0887.390086
 Citation: ZHANG Rui, FENG Ya, YANG Shuo. An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions[J]. Applied Mathematics and Mechanics, 2018, 39(6): 672-680.

# An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions

##### doi: 10.21656/1000-0887.390086
• Rev Recd Date: 2018-05-14
• Publish Date: 2018-06-15
• The grid sandwich structure was equivalent to a continuous micropolar elastic material with the method of cell energy equivalence, and the constitutive relation of the equivalent micropolar elastic material was obtained. Based on the geometrical relation and the equilibrium condition, the governing equations for the micropolar beam with thermal deformation were established, and the expression of the variation of the micropolar beam displacement under temperature load was given. By means of a grid sandwich cantilever beam under inhomogeneous temperature conditions, the effectiveness of the micropolar elastic equivalent was verified through comparison of the thermal bending deformation results calculated with the equivalent micropolar beam model, the sandwich beam model and the ANSYS finite element software, respectively. The results also show that, more stress and strain parameters are needed to describe the nonlocality due to the increase of constraints and the decrease of degrees of freedom when the discontinuous grid sandwich structure is equivalent to a continuous medium model.
•  [1] 范绪箕. 高速飞行器热结构分析与应用[M]. 北京: 国防工业出版社, 2009.(FAN Zhuqi. Thermal Structures Analysis and Applications of Highspeed Vehicles [M]. Beijing: National Defend Industry Press, 2009.(in Chinese)) [2] KO W L. Heat shielding characteristics and thermostructural performance of a superalloy honeycomb sandwich thermal protection system (TPS): NASA/TP-2004-212024[R]. 2004. [3] 马玉娥. 可重复使用运载器热防护系统热/力耦合数值计算研究[D]. 博士学位论文. 西安: 西北工业大学, 2005.(MA Yu’e. Study of thermo-mechanical coupled computation for thermal protection system of reusable launch vehicle[D]. PhD Thesis. Xi’an: Northwestern Polytechnical University, 2005.(in Chinese)) [4] 唐羽烨, 薛明德. 蜂窝夹芯板的热学与力学特性分析[J]. 复合材料学报, 2005,22(2): 130-136.(TANG Yuye, XUE Mingde. Thermo-mechanical characteristics analysis of sandwich panel with honeycomb core[J]. Acta Materice Compositae Sinica,2005,22(2): 130-136.(in Chinese)) [5] 刘振祺, 梁伟, 杨嘉陵, 等. MTPS蜂窝夹芯结构传热性能及热应力分析[J]. 航空学报, 2009,30(1): 86-91.(LIU Zhenqi, LIANG Wei, YANG Jialing, et al. Analysis of thermal and mechanical properties of honeycomb structure of MTPS[J]. Acta Aeronautic et Astronautica Sinica,2009,30(1): 86-91.(in Chinese)) [6] 李红. 高超声速飞行器金属蜂窝夹芯结构的热机耦合行为分析[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2011.(LI Hong. Research on thermo-mechanical-coupled properties of metallic honeycomb structure of high-speed vehicle[D]. Master Thesis. Harbin: Harbin Engineering University, 2011.(in Chinese)) [7] 张锐, 尚新春. 格栅夹层梁的热弯曲变形[J]. 复合材料学报, 2014,31(6): 1558-1565.(ZHANG Rui, SHANG Xinchun. Thermal bending deformation of grid sandwich beam[J]. Acta Materiae Compositae Sinica,2014,31(6): 1558-1565.(in Chinese)) [8] 张锐, 尚新春. 考虑腹板弯曲的一维格栅夹层结构热变形[J]. 北京理工大学学报, 2015,35(4): 331-335.(ZHANG Rui, SHANG Xinchun. Thermal deformation of the sandwich structure with 1-D grid considering the bending of the webs[J]. Transactions of Beijing Institute of Technology,2015,35(4): 331-335.(in Chinese)) [9] NOORA K, MALIK M. An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels[J]. Computational Mechanics,2000,25(1): 43-58. [10] 中国科学院, 北京力学研究所, 固体力学研究室板壳组. 夹层板壳的弯曲、稳定和振动[M]. 北京: 科学出版社, 1977.(Plate and Shell Group, Laboratory of Solid Mechanics, Institute of Mechanics, Chinese Academy of Sciences. Bending, Stability and Vibration of Sandwich Plates and Shells [M]. Beijing: Science Press, 1977.(in Chinese)) [11] SAVOIA M, REDDY J N. Three-dimensional thermal analysis of laminated composite plates[J]. International Journal of Solids and Structures,1995,32(5): 593-608. [12] NOOR A K, NEMETH M P. Micropolar beam models for lattice grids with rigid joints[J]. Computer Methods in Applied Mechanics and Engineering,1980,21(2): 249-263. [13] IESAN D. Thermal effects in chiral elastic rods[J]. International Journal of Thermal Sciences,2010,49(9): 1593-1599. [14] 张锐, 尚新春. 格栅夹层梁热弯曲的等效微极热弹性分析[J]. 应用数学和力学, 2015,36(9): 936-944.(ZHANG Rui, SHANG Xinchun. Equivalent micropolar thermoelastic analysis of thermal bending for grid sandwich beams[J]. Applied Mathematics and Mechanics,2015,36(9): 936-944.(in Chinese)) [15] 易斯男, 程耿东, 徐亮. 一维周期性梁结构等效性能计算方法讨论[J]. 计算力学学报, 2016,33(5): 704-710.(YI Sinan, CHENG Gengdong, XU Liang. Discussion of effective properties prediction methods for 1D periodic beam structure[J]. Chinese Journal of Computational Mechanics,2016,33(5): 704-710.(in Chinese)) [16] GESUALDO A, IANNUZZO A, PENTA F, et al. Homogenization of a Vierendeel girder with elastic joints into an equivalent polar beam[J]. Journal of Mechanics of Materials & Structures,2017,12(4): 485-504. [17] PENTA F, ESPOSITO L, PUCILLO G P, et al. On the homogenization of periodic beam-like structures[J]. Procedia Structural Integrity,2018,8: 399-409.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142