LI Yanyong, WEI Juanfang, JIANG Wenjian. Thermal Deformation Analysis and Structural Optimization of HighPrecision Reflector Engineering Models on Satellites[J]. Applied Mathematics and Mechanics, 2018, 39(6): 657-664. doi: 10.21656/1000-0887.390089
 Citation: LI Yanyong, WEI Juanfang, JIANG Wenjian. Thermal Deformation Analysis and Structural Optimization of HighPrecision Reflector Engineering Models on Satellites[J]. Applied Mathematics and Mechanics, 2018, 39(6): 657-664.

# Thermal Deformation Analysis and Structural Optimization of HighPrecision Reflector Engineering Models on Satellites

##### doi: 10.21656/1000-0887.390089
• Rev Recd Date: 2018-04-05
• Publish Date: 2018-06-15
• The finite element modeling method and material parameter valuing method were presented for a 2 m diameter satellite reflector engineering model, including the honeycomb sandwich structure, the backframe tubes and the patches connecting the back frame and the reflector. The thermal deformation and the variation of pointing accuracy in unfolded work condition of the reflector under extreme high/low temperatures were analyzed. Based on the principle of minimum inorbit thermal deformation, the optimal design values of the parameters, including the section parameters of the backframe, the thickness of the backframe tubes, the connection mode and the density of patches, were obtained by means of the discrete data comparative analysis method. The structural optimization of the reflector engineering model was fulfilled.
•  [1] YARZA A, CASTRO O, SANTIAGO-PROWALD J, et al. High stability large reflectors for Ka band[C]// Proceedings of the Fourth European Conference on Antennas and Propagation.Barcelona, Spain, 2010. [2] 韦娟芳, 冀有志, 龚博安. 星载蜂窝夹层结构天线复合材料力学性能检测[J]. 宇航材料工艺, 2007,37(5): 8-12.(WEI Juanfang, JI Youzhi, GONG Boan. Mechanical test for satellite antenna with composite honeycomb sandwich structure[J]. Aerospace Materials & Technology,2007,37(5): 8-12.(in Chinese)) [3] LANG M, BAIER H, ERNST T. High precision thin shell reflectors: design concepts, structural optimisation and shape adjustment techniques[C]// Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing 〖STBX〗2005(ESA SP-581). Noordwijk, the Netherlands, 2005. [4] PETERSSON M, BAUNGE M, EKSTRO M H, et al. A new concept for high performance Ka-band reflectors[C]// Proceedings of the Fourth European Conference on Antennas and Propagation.Barcelona, Spain, 2010. [5] 姚科, 杨军, 韦娟芳. 星载固面反射天线热变形分析[J]. 低温建筑技术, 2016,38(2): 67-69.(YAO Ke, YANG Jun, WEI Juanfang. Thermal distortion analysis of the rigid reflector of satellite antenna[J]. Low Temperature Architecture Technology,2016,38(2): 67-69.(in Chinese)) [6] 周涛, 叶周军, 史耀辉, 等. 星载蜂窝夹层结构固面天线反射器的热变形[J]. 复合材料学报, 2018. DOI: 10.13801/j.cnki.fhclxb.20171020.001.(ZHOU Tao, YE Zhoujun, SHI Yaohui, et al. Analysis of thermal distortion for honeycomb sandwich construction rigid reflector of satellite antenna[J]. Acta Materiae Compositae Sinica,2018. DOI: 10.13801/j.cnki.fhclxb.20171020.001. (in Chinese）） [7] 闵桂荣, 郭舜. 航天器热控制[M]. 北京: 科学出版社, 1998: 49-72.(MIN Guirong, GUO Shun. Thermal Control of Spacecraft [M]. Beijing: Science Press, 1998: 49-72.(in Chinese)) [8] 鞠金山, 王亚锋. 碳纤维天线反射面的热变形仿真[J]. 雷达科学与技术, 2009,7(4): 321-324.(JU Jinshan, WANG Yafeng. Simulation of heart-distortion for carbon fiber composite antenna reflector[J]. Radar Science and Technology,2009,7(4): 321-324.(in Chinese)) [9] 柏宏武, 马小飞, 宋燕平. 柔性自回弹天线反射器结构厚度的优化[J]. 空间电子技术, 2005(2): 42-47.(BAI Hongwu, MA Xiaofei, SONG Yanping. Optimization of the thickness of flexible self springback antenna reflector structure[J]. Space Electronic Technology,2005(2): 42-47.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142