HU Lijun, YUAN Li, ZHAI Jian. A Robust and Low-Dissipation Flux Splitting Scheme[J]. Applied Mathematics and Mechanics, 2019, 40(2): 150-166. doi: 10.21656/1000-0887.390132
Citation: HU Lijun, YUAN Li, ZHAI Jian. A Robust and Low-Dissipation Flux Splitting Scheme[J]. Applied Mathematics and Mechanics, 2019, 40(2): 150-166. doi: 10.21656/1000-0887.390132

A Robust and Low-Dissipation Flux Splitting Scheme

doi: 10.21656/1000-0887.390132
  • Received Date: 2018-04-25
  • Rev Recd Date: 2018-06-13
  • Publish Date: 2019-02-01
  • With the rapid development of computational fluid dynamics, it is particularly important to design accurate, efficient and robust numerical schemes. Through the characteristics analyses of 3 popular flux splitting methods (AUSM, Zha-Bilgen and Toro-Vázquez), a simple, low-dissipation and robust flux splitting scheme (named as R-ZB) was constructed. The flux of Euler equations was split into a convection flux and a pressure flux with the Zha-Bilgen splitting procedure. The convection flux was computed with a simple upwinding scheme, and the pressure flux was evaluated with a low-dissipation HLL scheme to overcome the flaw of failing to capture contact discontinuities. Numerical experiments show that, the proposed R-ZB scheme not only retains the merits of the original Zha-Bilgen scheme, such as simpleness, efficiency and capturing contact discontinuities accurately, etc., but also has better robustness, which eliminates the numerical shock instabilities in the calculation of 2D problems.
  • loading
  • [1]
    LIOU M S. Open issues in numerical fluxes: proposed resolutions[C]// 〖STBX〗20th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences,2011. DOI: 10.2514/6.2011-3055.
    [2]
    QU F, YAN C, YU J, et al. A new flux splitting scheme for the Euler equations[J]. Computers & Fluids,2014,102: 203-214.
    [3]
    ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372.
    [4]
    HARTEN A, LAX P D, VAN LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review,1983,25(1): 35-61.
    [5]
    TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves,1994,4(1): 25-34.
    [6]
    TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics [M]. 3rd ed. Berlin: Springer, 1999.
    [7]
    KIM S D, LEE B J, LEE H J, et al. Robust HLLC Riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics,2009,228(20): 7634-7642.
    [8]
    STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics,1981,40(2): 263-293.
    [9]
    VAN LEER B. Flux vector splitting for the Euler equations[C]// 〖STBX〗8th International Conference on Numerical Methods in Fluid Dynamics . Berlin, Heidelberg: Springer-Verlag, 1982: 507-512.
    [10]
    ANDERSON W K, THOMAS J L, VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal,1986,24(9): 1453-1460.
    [11]
    TORO E F, VZQUEZ-CENDN M E. Flux splitting schemes for the Euler equations[J]. Computers & Fluids,2012,70: 1-12.
    [12]
    LIOU M S, STEFFEN JR C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-39.
    [13]
    LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
    [14]
    LIOU M S. Recent progress and applications of AUSM+[C]//16th International Conference on Numerical Methods in Fluid Dynamics . Berlin, Germany, 1998.
    [15]
    LIOU M S. A sequel to AUSM, part II: AUSM+-up for all speeds[J]. Journal of Computational Physics,2006,214(1): 137-170.
    [16]
    ZHA G C, BILGEN E. Numerical solution of Euler equations by using a new flux vector splitting scheme[J]. International Journal for Numerical Methods in Fluids,1993,17(2): 115-144.
    [17]
    ZHA G C, SHEN Y, WANG B. An improved low diffusion E-CUSP upwind scheme[J]. Computers & Fluids,2011,48(1): 214-220.
    [18]
    KAPEN P T, TCHUEN G. An extension of the TV-HLL scheme for multi-dimensional compressible flows[J]. International Journal of Computational Fluid Dynamics,2015,29(3/5): 303-312.
    [19]
    TORO E F, CASTRO C E, LEE B J. A novel numerical flux for the 3D Euler equations with general equation of state[J]. Journal of Computational Physics,2015,303: 80-94.
    [20]
    XIE W, LI H, TIAN Z, et al. A low diffusion flux splitting method for inviscid compressible flows[J]. Computers & Fluids,2015,112: 83-93.
    [21]
    SHIMA E, KITAMURA K. Parameter-free simple low-dissipation AUSM-family scheme for all speeds[J]. AIAA Journal,2011,49(8): 1693-1709.
    [22]
    MANDAL J C, PANWAR V. Robust HLL-type Riemann solver capable of resolving contact discontinuity[J]. Computers & Fluids,2012,63: 148-164.
    [23]
    QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
    [24]
    HU L J, YUAN L. A robust hybrid HLLC-FORCE scheme for curing numerical shock instability[J]. Applied Mechanics and Materials,2014,577: 749-753.
    [25]
    WU H, SHEN L J, SHEN Z J. A hybrid numerical method to cure numerical shock instability[J]. Communications in Computational Physics,2010,8: 1264-1271.
    [26]
    REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids,2003,32(10): 1379-1403.
    [27]
    胡立军, 袁礼. 一种治愈强激波数值不稳定性的混合方法[J]. 应用数学和力学, 2015,36(5): 482-493.(HU Lijun, YUAN Li. Analysis of numerical shock instability and a hybrid curing method[J]. Applied Mathematics and Mechanics,2015,36(5): 482-493.(in Chinese))
    [28]
    SUN M, TAKAYAMA K. An artificially upstream flux vector splitting scheme for the Euler equations[J]. Journal of Computational Physics,2003,189(1): 305-329.
    [29]
    GOTTLIEB S. On high order strong stability preserving Runge-Kutta and multi step time discretizations[J]. Journal of Scientific Computing,2005,25(1/2): 105-128.
    [30]
    LI B, YUAN L. Convergence issues in using high-resolution schemes and lower-upper symmetric Gauss-Seidel method for steady shock-induced combustion problems[J]. International Journal for Numerical Methods in Fluid,2013,71(11): 1422-1437.
    [31]
    JIANG G S, SHU W C. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics,1996,126(1): 202-228.
    [32]
    WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics,1984,54(1): 115-173.
    [33]
    KITAMURA K, ROE P L, ISMAIL F. Evaluation of Euler fluxes for hypersonic flow computations[J]. AIAA Journal,2009,47(1): 44-53.
    [34]
    LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM Journal on Scientific Computing,1998,19(2): 319-340.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (986) PDF downloads(487) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return