YANG Yu, LIANG Yingjie, CHEN Wen. A Cumulative Residual Entropy Method in Selection of Random Load Distributions[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1343-1350. doi: 10.21656/1000-0887.390157
 Citation: YANG Yu, LIANG Yingjie, CHEN Wen. A Cumulative Residual Entropy Method in Selection of Random Load Distributions[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1343-1350.

# A Cumulative Residual Entropy Method in Selection of Random Load Distributions

##### doi: 10.21656/1000-0887.390157
• Rev Recd Date: 2018-10-16
• Publish Date: 2018-12-01
• A cumulative residual entropy method was proposed to select the most suitable statistical distribution for the random load based on the Lévy stable distribution. In this method, the cumulative distribution and the tail distribution of the water level were fitted with the candidate distributions, and the cumulative residual entropy and the corresponding relative distances between the estimated distribution and the real distribution were respectively calculated, where the smaller the relative distance is, the more accurate the candidate distribution will be. The proposed method was validated by the upstream and downstream water levels of the Yongji 2nd sluice gate. The results show that, the Lévy stable distribution has the highest accuracy compared with the normal and the extreme value type I distributions in describing the heavy tail of the water level. The relative distances between the cumulative entropy and the cumulative residual entropy reveal that the fitting errors of the Lévy stable distribution are the smallest. Thus, based on the Lévy stable distribution, the cumulative residual entropy method is effective in selection of the distribution of the random load, which provides new ideas for the selection of random load distributions, and helps accurately calculate the reliability of engineering structures.
•  [1] 赵国藩. 结构可靠度理论[M]. 北京: 中国建筑工业出版社, 2000.(ZHAO Guofan. Structural Reliability Theory [M]. Beijing: China Building Industry Press, 2000.(in Chinese)) [2] 李全旺, 李春前, 孙健康. 基于结构可靠性理论的既有桥梁承载能力评估[J]. 工程力学, 2010,〖STHZ〗27(S2): 142-151.(LI Quanwang, LI Chunqian, SUN Jiankang. Reliability-based capacity assessment of existing bridges[J].Engineering Mechanics,2010,27(S2): 142-151 (in Chinese)) [3] 邹春霞. 基于最大熵原理的水工建筑物可靠性分析[D]. 硕士学位论文. 呼和浩特: 内蒙古农业大学, 2004.(ZOU Chunxia. Reliability analysis of hydraulic construction based on the principle of maximum entropy[D]. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2004.(in Chinese)) [4] LIANG Y, CHEN W. Reliability analysis for sluice gate anti-sliding stability using Lévy stable distributions[J]. Signal Processing,2015,107: 425-432. [5] PROPPE C. Estimation of failure probabilities by local approximation of the limit state function[J]. Structural Safety,2008,30(4): 277-290. [6] SU Y H, LI X, XIE Z Y. Probabilistic evaluation for the implicit limit-state function of stability of a highway tunnel in China[J]. Tunnelling and Underground Space Technology,2011,26(2): 422-434. [7] 梁英杰. 分数阶统计力学的研究及其在工程可靠性和反常扩散中的应用[D]. 博士学位论文. 南京: 河海大学, 2016.(LIANG Yingjie. A study on fractional statistical mechanics and its applications in engineering reliability and anomalous diffusion[D]. PhD Thesis. Nanjing: Hohai University. 2016.(in Chinese)) [8] BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A, LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE Transactions on Power Systems,2008,23(3): 983-991. [9] MAHANI A, KAVIAN Y S, NADERI M, et al. Heavy-tail and voice over internet protocol traffic: queueing analysis for performance evaluation[J]. Iet Communications,2011,5(18): 2736-2743. [10] KWON K, FRANGOPOL D M. Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data[J]. International Journal of Fatigue,2010,32(8): 1221-1232. [11] WERON R J. Computationally Intensive Value at Risk Calculations [M]//GENTLE J E, HRDLE W, MORI Y, ed.Handbook of Computational Statistics . Berlin: Springer, 2004. [12] DAVID A. Lévy processes-from probability to finance and quantum groups[J]. Notices of the AMS,2004,51(11): 1336-1347. [13] MARIANI M C, BIANCHINI A, BANDINI P. Normalized truncated Levy walk applied to flexible pavement performance[J]. Transportation Research Part C,2012,24: 1-8. [14] GONZALEZ D S, KURUOGLU E E, RULZ D P. Modelling with mixture of symmetric stable distributions using Gibbs sampling[J]. Signal Processing,2010,90(3): 774-783. [15] 徐绪松, 马莉莉, 陈彦斌. Lévy分布在中国股票市场中的实证检验[J]. 科技进步与决策, 2005,〖STHZ〗 22(8): 103-105.(XU Xusong, MA Lili, CHEN Yanbin. The empirical tests of Lévy distribution on China’s stock market[J].Science & Technology Progress and Policy,2005,22(8): 103-105.(in Chinese)) [16] 梁英杰, 陈文. Lévy稳定分布对住宅楼面活荷载的统计分析[J]. 工程力学, 2014,31(6): 166-172.(LIANG Yingjie, CHEN Wen. Statistical anaiysis of live load on residence floor using Lévy stable distributions[J]. Engineering Mechanics,2014,31(6): 166-172.(in Chinese)) [17] 陈文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.(CHEN Wen, SUN Hongguang, LI Xicheng. Fractional Derivative Modeling in Mechanical and Engineering Problems [M]. Beijing: Science Press, 2010.(in Chinese)) [18] NOLAN J P. Stable Distribution: Models for Heavy-Tailed Data [M]. Boston: Birkhauser, 2010. [19] LIANG Y, CHEN W. A survey on computing Lévy stable distributions and a new MATLAB toolbox[J]. Signal Processing,2013,93(1): 242-251. [20] MURALI R. More on a new concept of entropy and information[J]. Journal of Theoretical Probability,2005,18(14): 967-981. [21] LIANG Y, CHEN W. A cumulative entropy method for distribution recognition of model error[J]. Physica A: Statistical Mechanics and Its Applications,2015,419: 729-735. [22] SAMORODNITSKY G, TAQQU M S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Varianc[M]. Boca Raton: CRC Press, 1994. [23] NOLAN J P. Parameterizations and modes of stable distributions[J]. Statistics & Probability Letters,1998,38(2): 187-195. [24] ZOLOTAREV V M. One-Dimensional Stable Distributions [M]. Providence: American Mathematical Society, 1986. [25] DIONISIO A, MENEZES R, MENDES D A. An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market[J]. The European Physical Journal B: Condensed Matter and Complex Systems,2006,50(1/2): 161-164.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142