Volume 42 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
LI Changyu, FANG Yankui, LIU Fuxu, RUAN Yuhang. A Thermal Protective Clothing-Air-Skin Heat Conduction Model and Its Analytical Solution[J]. Applied Mathematics and Mechanics, 2021, 42(2): 162-169. doi: 10.21656/1000-0887.400290
 Citation: LI Changyu, FANG Yankui, LIU Fuxu, RUAN Yuhang. A Thermal Protective Clothing-Air-Skin Heat Conduction Model and Its Analytical Solution[J]. Applied Mathematics and Mechanics, 2021, 42(2): 162-169.

# A Thermal Protective Clothing-Air-Skin Heat Conduction Model and Its Analytical Solution

##### doi: 10.21656/1000-0887.400290
• Rev Recd Date: 2020-06-22
• Publish Date: 2021-02-01
• A thermal protective clothing-air-skin heat conduction model in high temperature environment was established. The analytical solution of heat conduction in a small time period was derived by means of the method of separation of variables under the conditions of equal temperature and continuous heat flux at the laminate interface during heat conduction, and then the analytical solution in the whole time domain was obtained through iteration. The variations of temperature and heat flux in different positions in the model at an ambient temperature of 80 ℃ were analyzed with the analytical solution. Then the surface temperature and thermal damage of skin at different ambient temperatures were calculated. The solution method applies to heat transfer problems of general laminate structures. The calculation results are of referential significance for the design and effect evaluation of thermal protective clothing.
•  [1] WANG S X, LI Y, HU J Y, et al. Effect of phase-change material on energy consumption of intelligent thermal-protective clothing[J]. Polymer Testing,2006,25(5): 580-587. [2] SONG G, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal,2010,81(3): 311-323. [3] 田苗, 李俊. 数值模拟在热防护服装性能测评中的应用[J]. 纺织学报, 2015,36(1): 158-164.(TIAN Miao, LI Jun. Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing[J]. Journal of Textile Research,2015,36(1): 158-164.(in Chinese)) [4] 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018,39(1): 111-118.(LU Linzhen, XU Dinghua, XU Yinhong. Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing[J]. Journal of Textile Research,2018,39(1): 111-118.(in Chinese)) [5] 张英, 胡琴, 李紫含, 等. 热防护服降温效果评价指标与方法研究进展[J]. 工业安全与环保, 2018,44(3): 46-49.(ZHANG Ying, HU Qin, LI Zihan, et al. Research progress on evaluation indicators and methods of cooling effect for thermal protective clothing[J]. Industrial Safety and Environmental Protection,2018,44(3): 46-49.(in Chinese)) [6] 李紫含, 王世杰, 徐伯乐, 等. 热防护服降温效果评价体系研究[J]. 武汉理工大学学报(信息与管理工程版), 2018,40(1): 18-22.(LI Zihan, WANG Shijie, XU Bole, et al. Study on evaluation system of thermal protective clothing cooling effect[J]. Journal of Wuhan University of Technology (Information & Management Engineering),2018,40(1): 18-22.(in Chinese)) [7] 毛瑶瑶, 朱家明. 基于热传导及遗传算法对防热服的优化设计[J]. 兰州文理学院学报(自然科学版), 2019,33(3): 31-34, 74.(MAO Yaoyao, ZHU Jiaming. Optimal design of heat-proof clothing based on heat conduction and genetic algorithms[J]. Journal of LanZhou University of Arts and Science (Natural Sciences Edition),2019,33(3): 31-34, 74.(in Chinese)) [8] 姚沃成, 傅宇辉, 江俊贤. 高温作业专用服装设计的数学模型[J]. 电子测试, 2019,408(S1): 65-67.(YAO Wochen, FU Yuhu, JIANG Junxian. Mathematical model of clothing design for high temperature operation[J]. Journal of Electronic Testing,2019,408(S1): 65-67.(in Chinese)) [9] MOHAJER M, AYANI M B, TABRIZI H B. Numerical study of non-Fourier heat conduction in a bio-layer spherical living tissue during hyperthermia[J]. Journal of Thermal Biology,2016,62(B): 181-185. [10] 刘芳, 施卫平. 用格子Boltzmann方法模拟非线性热传导方程[J]. 应用数学和力学, 2015,36(11): 1158-1166.(LIU Fang, SHI Weipin. Simulation of the nonlinear heat conduction equation with the lattice Boltzmann method[J]. Applied Mathematics and Mechanics,2015,36(11): 1158-1166.(in Chinese)) [11] 富明慧, 陈焯智. 层合圆柱三维温度场分析的半解析-精细积分法[J]. 应用力学学报, 2012,29(1): 15-20.(FU Minghui, CHEN Zhuozhi. The semi-analytical precise integration method for the analysis of three dimensional temperature field of laminated cylinde[J]. Chinese Journal of Applied Mechanics,2012,29(1): 15-20.(in Chinese)) [12] 刘文胜, 李璇, 马运柱, 等. 有限元法求解瞬态温度场时的数值振荡研究[J]. 应用数学和力学, 2018,39(4): 403-414.(LIU Wensheng, LI Xuan, MA Yunzhu, et al. Study of numerical oscillation in solving transient temperature fields with the finite element method[J]. Applied Mathematics and Mechanics,2018,39(4): 403-414.(in Chinese)) [13] 李长玉, 林水木, 戴海燕, 等. 基于拓展分离变量法的层合材料瞬态传热分析[J]. 物理学报, 2018,67(21): 245-252.(LI Changyu, LIN Shuimu, DAI Haiyan, et al. Transient heat transfer analysis of laminated materials based on extended separation variable method[J]. Acta Physica Sinica,2018,67(21): 245-252.(in Chinese)) [14] XU F, LU T J, SEFFEN K A. Bio-thermo-mechanics of skin tissues[J]. Journal of the Mechanics & Physics of Solids,2008,56(5): 1852-1884. [15] LIU K C, WANG Y N, CHEN Y S. Investigation on the bio-heat transfer with the dual-phase-lag effect[J]. International Journal of Thermal Sciences,2012,58: 29-35. [16] 李学亮, 朱健铭, 夏金虹, 等. 局部皮肤绝热法无损测量血液灌注率研究[J]. 桂林电子科技大学学报, 2012,32(4): 331-334.(LI Xueliang, ZHU Jianming, XIA Jinhong, et al. Research on non-invasive measurement of blood perfusion rate with local skin adiabatic method[J]. Journal of Guilin University of Electronic Technology,2012,32(4): 331-334.(in Chinese)) [17] LIN S M, LI C Y. Semi-analytical solution of bio-heat conduction for multi-layers skin subjected to laser heating and fluid cooling[J]. Journal of Mechanics in Medicine & Biology,2016,17(2): 1750029. [18] HAMMER B E. Physical properties of tissues[J]. Moscow University Mathematics Bulletin,1991,54(3): 112-135.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142