HUANG Yifan, LOU Qin. Power-Law Fluid Droplet Dynamic Behaviors in T-Junction Micro-Channels With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1125-1145. doi: 10.21656/1000-0887.400341
Citation: HUANG Yifan, LOU Qin. Power-Law Fluid Droplet Dynamic Behaviors in T-Junction Micro-Channels With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1125-1145. doi: 10.21656/1000-0887.400341

Power-Law Fluid Droplet Dynamic Behaviors in T-Junction Micro-Channels With the Lattice Boltzmann Method

doi: 10.21656/1000-0887.400341
Funds:  The National Natural Science Foundation of China(51976128)
  • Received Date: 2019-11-13
  • Rev Recd Date: 2020-01-30
  • Publish Date: 2020-10-01
  • The dynamic behavior of a power-law fluid droplet passing through a T-junction micro-channel and phase diagrams of droplet flow patterns were studied with the lattice Boltzmann method. The effects of power-law exponent n on the droplet deformation characteristics including the neck thickness, the droplet motion distance and phase diagrams of droplet flow patterns were addressed. The numerical results show that, there exist 3 flow patterns for power-law droplets in T-junction micro-channels, i.e., breakup with obstruction, breakup with a tunnel and non-breakup. In the case of breakup with obstruction, the droplet neck thickness decreases with time during the evolution process, and the decrease rate drops with n.At the same time, the droplet tip motion distance increases linearly with time during the evolution process, and the distance also increases with n.In the case of breakup with a tunnel, the droplet neck thickness decreases with time, and the decrease rate drops with n.However, the droplet tip motion distance increases rapidly at first and then slowly, the droplet-wall gap width grows approximately logarithmically with time. Furthermore, the fluctuations of both the droplet neck thickness and the droplet tip motion distance occur in the non-breakup pattern of the droplet. Moreover, it is easier to break up a droplet with a larger value of power-law index n,while it is hard to reach the breakup with obstruction in this case. Eventually, several phase diagrams with power-law correlations for droplet flow patterns were obtained. The fitting functions can be used to describe the critical boundary lines between different flow patterns.
  • loading
  • [1]
    陈金阳, 李春荣, 吉邢虎, 等. 微流控液滴操控技术及其生物分析应用[J]. 分析科学学报, 2018,34(3): 422-428.(CHEN Jinyang, LI Chunrong, JI Xinghu, et al. Droplet manipulation in microfluidics and bioanalytical applications[J]. Journal of Analytical Science,2018,34(3): 422-428.(in Chinese))
    PATABADIGE D E W, SADEGHI J, KALUBOWILAGE M, et al. Integrating optical fiber bridges in microfluidic devices to create multiple excitation/detection points for single cell analysis[J]. Analytical Chemistry,2016,88(20): 9920-9925.
    HUDGINS D, ABHARI R S. Rupture time of droplets impacted by a burst of picosecond laser pulses[J]. Physical Review E,2019,99(3): 1-6.
    HOANG D A, PORTELA L M, KLEIJN C R, et al. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics,2013,717(4): 1-11.
    GLAWDEL T, ELBUKEN C, REN C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime, Ⅱ: modeling[J]. Physical Review E,2012,85(1/2): 1-12.
    SUN X, ZHU C Y, FU T T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction[J]. Chemical Engineering Science,2018,188: 158-169.
    MASHAGHI S, OIJEN A M V. Droplet microfluidics for kinetic studies of viral fusion[J]. Biomicrofluidics,2016,10(2): 1-8.
    PI Q M, MAHARJAN S, YAN X, et al. Microfluidic bioprinting: digitally tunable microfluidic bioprinting of multilayered cannular tissues[J]. Advanced Materials,2018,30(43): 1-10.
    李樊, 朱珉, 付向宁. T微流控分析芯片在循环肿瘤细胞检测中的运用[J]. 医学与哲学, 2014,35(3): 72-74.(LI Fan, ZHU Min, FU Xiangning. The use of microfluidic device in the detection of the circulating Tumor cells [J]. Medicine & Philosophy,2014,35(3): 72-74.(in Chinese))
    HOU Y, XIE W Y, ACHAZI K, et al. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells[J]. Acta Biomaterialia,2018,77: 28-37.
    GUNES D Z. Microfluidics for food science and engineering[J]. Current Opinion in Food Science,2018,21: 57-65.
    ADAMSON D N, MUSTAFI D, ZHANG J X J, et al. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab on a Chip,2006,6(9): 1178-1186.
    王维萌, 马一萍, 王澎, 等. T型微通道中微液滴被动破裂的可视化实验研究[J]. 工程热物理学报, 2015,36(2): 338-341.(WANG Weimeng, MA Yiping, WANG Peng, et al. The visualization study of breakup of drops in T-shaped micro-fluidic devices[J]. Journal of Engineering Thermophysics,2015,36(2): 338-341.(in Chinese))
    JULLIEN M C, CHING M J T M, COHEN C, et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids,2009,21(7): 1-6.
    HARINGA C, JONG C D, HOANG D A, et al. Breakup of elongated droplets in microfluidic T-junctions[J]. Physical Review Fluids,2019,4(2): 1-14.
    SAMIE M, SALARI A, SHAFII M B. Breakup of microdroplets in asymmetric T junctions[J]. Physical Review E,2013,87(5): 1-8.
    王澎, 陈斌. T型微流控芯片中微液滴破裂的数值模拟[J]. 化工学报, 2012,63(4): 999-1003.(WANG Peng, CHEN Bin. Numerical simulation of micro-droplet breakup in T-shaped micro-fluidic chip[J]. Ciesc Journal,2012,〖STHZ〗 63(4): 999-1003.(in Chinese))
    CHEN B, LI G J, WANG W M, et al. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method[J]. Applied Thermal Engineering,2015,88: 94-101.
    STONE H A. Dynamics of drop deformation and breakup in viscous flows[J]. Annual Review of Fluid Mechanics,2003,26(1): 65-102.
    娄钦, 罗祝清, 王俊, 等. 基于Soret和Dufour效应的方腔内双扩散自然对流振荡特性研究[J]. 应用数学和力学, 2018,39(2): 147-159.(LOU Qin, LUO Zhuqing, WANG Jun, et al. Oscillating characteristics of double diffusive natural convection with soret and dufour effects in square cavities[J]. Applied Mathematics and Mechanics,2018,39(2): 147-159.(in Chinese))
    陆威, 王婷婷, 徐洪涛, 等. 多孔介质复合方腔双扩散混合对流LBM模拟[J]. 应用数学和力学, 2017,38(7): 780-793.(LU Wei, WANG Tingting, XU Hongtao, et al. LBM simulation of double diffusive mixed convection in a porous medium composite cavity[J]. Applied Mathematics and Mechanics,2017,38(7): 780-793.(in Chinese))
    谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014,35(3): 247-253.(XIE Chiyu, ZHANG Jiangying, WANG Moran, et al. Lattice Boltzmann simulation of droplet evaporation on flat solid surface[J]. Applied Mathematics and Mechanics,2014,35(3): 247-253.(in Chinese))
    LIU H H, JU Y P, WANG N N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference[J]. Physical Review E,2015,92(3): 1-12.
    HALLIDAY I, LAW R, CARE C M, et al. Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number[J]. Physical Review E,2006,73(2): 1-11.
    HALLIDAY I, HOLLIS A P, CARE C M. Lattice Boltzmann algorithm for continuum multicomponent flow[J]. Physical Review E,2007,76(2): 1-13.
    FU Y H, BAI L, JIN Y, et al. Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference[J]. Physics of Fluids,2017,29(3): 1-12.
    CHEN Y P, DENG Z L. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics,2017,819: 401-434.
    娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann模型及其在多孔介质内驱替问题中的应用[J]. 物理学报, 2019,〖STHZ〗 68(21): 191-203.(LOU Qin, HUANG Yifan, LI Ling. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media[J]. Acta Physica Sinica,2019,68(21): 191-203.(in Chinese))
    GUO Z L, ZHENG C G, SHI B C. Force imbalance in lattice Boltzmann equation for two-phase flows[J]. Physical Review E,2011,83(2/3): 1-8.
    DAVIES A R D, SUMMERS J L, Wilson M C T. On a dynamic wetting model for thefinite-density multiphase lattice Boltzmann method[J]. International Journal of Computational Fluid Dynamics,2006,20(6): 415-425.
    LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part Ⅰ: theoretical foundation[J]. Journal of Fluid Mechanics,1993,271(3): 285-310.
    LOU Q, LI T, YANG M. Numerical simulation of the bubble dynamics in a bifurcated micro-channel using the lattice Boltzmann method[J].Journal of Applied physics. 2019,126(3): 034301.
    LOU Q, GUO Z L, SHI B C. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation[J]. Physical review E,2013,87(6): 1-16.
    梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟[J]. 物理学报, 2016,65(20): 139-148.(LIANG Hong, CHAI Zhenhua, SHI Baochang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel[J]. Acta Physica Sinica, 2016,65(20): 139-148.(in Chinese))
    SHI Y, TANG G H. Simulation of Newtonian and non-Newtonian rheology behavior of viscous fingering in channels by the lattice Boltzmann method[J]. Computers and Mathematics With Applications,2014,68(10): 1279-1291.
    SHI Y, TANG G H. Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method[J]. Journal of Non-Newtonian Fluid Mechanics,2016,229: 86-95.
    SONTTI S G, ATTA A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal,2017,330: 245-261.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3501) PDF downloads(339) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint