Citation: | HU Lijun, ZHAO Kunlei. A Modified Roe Scheme and Stability Analysis[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1110-1124. doi: 10.21656/1000-0887.400388 |
[1] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372.
|
[2] |
TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL Riemann solver[J]. Shock Waves,1994,4(1): 25-34.
|
[3] |
QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
|
[4] |
GRESSIER J, MOSCHETTA J M. Robustness versus accuracy in shock-wave computations[J]. International Journal for Numerical Methods in Fluids,2000,33(3): 313-332.
|
[5] |
SHEN Z J, YAN W, YUAN G W. A robust HLLC-type Riemann solver for strong shock[J]. Journal of Computational Physics,2016,309: 185-206.
|
[6] |
XIE W J, LI H, TIAN Z Y, et al. A low diffusion flux splitting method for inviscid compressible flows[J]. Computers & Fluids,2015,112(2): 83-93.
|
[7] |
LIOU M S. Mass flux scheme and connection to shock instability[J]. Journal of Computational Physics,2000,160(2): 623-648.
|
[8] |
LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
|
[9] |
XU K, LI Z W. Dissipative mechanism in Godunov-type schemes[J]. International Journal of Numerical Methods in Fluids,2001,37(1): 1-22.
|
[10] |
DUMBSER M, MOSCHETTA J M, GRESSIER J. A matrix stability analysis of the carbuncle phenomenon[J]. Journal of Computational Physics,2004,197(2): 647-670.
|
[11] |
CHEN S S, YAN C, LIN B X, et al. Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon[J]. Journal of Computational Physics,2018,373: 662-672.
|
[12] |
XIE W J, LI W, LI H, et al. On numerical instabilities of Godunov-type schemes for strong shocks[J]. Journal of Computational Physics,2017,350: 607-637.
|
[13] |
SIMON S, MANDAL J C. A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control[J]. Computers & Fluids,2018,174: 144-166.
|
[14] |
WU H, SHEN L J, SHEN Z J. A hybrid numerical method to cure numerical shock instability[J]. Communications in Computational Physics,2010,8: 1264-1271.
|
[15] |
REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids,2003,32(10): 1379-403.
|
[16] |
NISHIKAWA H, KITAMURA K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics,2008,227(4): 2560-2581.
|
[17] |
PEERY K M, IMLAY S T. Blunt-body flow simulations[C]//24th Joint Propulsion Conference . Boston, MA, 1988.
|
[18] |
FLEISCHMANN N, ADAMI S, HU X Y, et al. A low dissipation method to cure the grid-aligned shock instability[J]. Journal of Computational Physics,2020,401: 109004.
|
[19] |
KIM S, KIM C, RHO O H, et al. Cures for the shock instability: development of a shock-stable Roe scheme[J]. Journal of Computational Physics,2003,185(2): 342-374.
|
[20] |
RODIONOV A. Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon[J]. Journal of Computational Physics,2017,345: 308-329.
|
[21] |
RODIONOV A. Artificial viscosity to cure the shock instability in high-order Godunov-type schemes[J]. 〖JP〗 Computers & Fluids,2019,190: 77-97.
|
[22] |
RODIONOV A. Artificial viscosity to cure the carbuncle phenomenon: the three-dimensional case[J]. Journal of Computational Physics,2018,361: 50-55.
|
[23] |
WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics,1984,54(1): 115-173.
|
[24] |
HUANG K B, WU H, YU H, et al. Cures for numerical shock instability in HLLC solver[J]. International Journal of Numerical Methods in Fluids,2011,65(9): 1026-1038.
|