LU Kun, LI Jianquan, TAN Hongwu. Analysis of a Rotavirus Transmission Model With Temporary Immunity and Protection From Maternal Antibody[J]. Applied Mathematics and Mechanics, 2020, 41(7): 796-806. doi: 10.21656/1000-0887.400391
Citation: LU Kun, LI Jianquan, TAN Hongwu. Analysis of a Rotavirus Transmission Model With Temporary Immunity and Protection From Maternal Antibody[J]. Applied Mathematics and Mechanics, 2020, 41(7): 796-806. doi: 10.21656/1000-0887.400391

Analysis of a Rotavirus Transmission Model With Temporary Immunity and Protection From Maternal Antibody

doi: 10.21656/1000-0887.400391
Funds:  The National Natural Science Foundation of China(11301314;11501443;11971281)
  • Received Date: 2019-12-30
  • Rev Recd Date: 2020-03-25
  • Publish Date: 2020-07-01
  • Rotavirus is the leading cause of severe diarrhea in children worldwide. To study the spread of rotavirus, a rotavirus transmission model was proposed based on the characteristics of temporary immunity after infection and maternal antibody protecting the newborn. By means of dynamic analysis, the basic reproduction number deciding the persistence of the infection was obtained. Based on the local stability analysis of the feasible equilibria, it was proved that the diseasefree equilibrium will be globally asymptotically stable if the basic reproduction number is no more than 1, through construction of appropriate Lyapunov functions. The disease will persist in the population if the basic reproduction number is more than 1 according to the Fonda lemma.
  • loading
  • [1]
    朱本辉, 李玉霞, 蔡燕杏, 等. 大剂量蒙脱石散治疗儿童轮状病毒肠炎的临床研究[J]. 河北医科大学学报, 2018,39(8): 966-968.(ZHU Benhui, LI Yuxia, CAI Yanxing, et al. Clinical study on the treatment of rotavirus enteritis in children with large dose of montmorillonite powder[J]. Journal of Hebei Medical University,2018,39(8): 966-968.(in Chinese))
    [2]
    冯秀, 游胜, 吴耀坚, 等. 一起学校轮状病毒感染性腹泻暴发疫情调查处置[J]. 应用预防医学, 2018,24(1): 74-76.(FENG Xiu, YOU Sheng, WU Yaojian, et al. Investigation and management of a school rotavirus infectious diarrhea outbreak[J]. Journal of Applied Preventive Medicine,2018,〖STHZ〗 24(1): 74-76.(in Chinese))
    [3]
    姚淑雯, 梁卓夫, 林爱君, 等. 1 568例婴幼儿腹泻轮状病毒检测及流行病学特征分析[J]. 中国医药科学, 2013(21): 73-74.(YAO Shuwen, LIANG Zhuofu, LIN Aijun, et al. Detection of rotavirus and analysis of epidemiological features of 1 568 infants with diarrhea[J]. China Medicine and Pharmacy,2013(21): 73-74.(in Chinese))
    [4]
    魏升云, 张淑珍, 方鹤松. 轮状病毒肠炎研究进展[J]. 临床儿科杂志, 2004,22(6): 409-411.(WEI Shengyun, ZHANG Shuzhen, FANG Hesong. Research progress in rotavirus enteritis[J]. Journal of Clinical Pediatrics,2004,22(6): 409-411.(in Chinese))
    [5]
    陈阿群, 陈茂余, 韦志楠, 等. 2012—2016年广东省江门市其他感染性腹泻流行病学特征和监测结果分析[J]. 疾病监测, 2017,32(12): 936-939.(CHEN Aqun, CHEN Maoyu, WEI Zhinan, et al. Epidemiological characteristics and surveillance results analysis on other infectious diarrheal diseases in Jiangmen, 2012—2016[J]. Disease Surveillance,2017,32(12): 936-939.(in Chinese))
    [6]
    谭梦婷, 徐小红, 林俊仪, 等. 0至3岁婴幼儿轮状病毒感染流行病学特点及危险因素[J]. 中华实验和临床感染病杂志(电子版), 2018,12(4): 409-412.(TAN Mengting, XU Xiaohong, LIN Junyi, et al. Epidemilological characteristies and risk factors of infants aged 0~3 years with rotavirus infection[J]. Chinese Journal of Experimental and Clinical Infectious Diseases (Electronic Edition),2018,12(4): 409-412.(in Chinese))
    [7]
    MASTRETTA E, LONGO P, LACCISAGLIA A, et al. Effect of lactobacillus GG and breast-feeding in the prevention of rotavirus nosocomial infection[J]. Journal of Pediatric Gastroenterology and Nutrition,2002,35(4): 527-531.
    [8]
    SHIM E, FENG Z, MARTCHEVA M, et al. An age-structured epidemic model of rotavirus with vaccination[J]. Journal of Mathematical Biology,2006,53(4): 719-746.
    [9]
    ATCHISON C, LOPMAN B, EDMUNDS W J. Modelling the seasonality of rotavirus disease and the impact of vaccination in England and Wales[J]. Vaccine,2010,28(18): 3118-3126.
    [10]
    LINHARES A C, GABBAY Y B, FREITAS R B, et al. Longitudinal study of rotavirus infections among children from Belém, Brazil[J]. Epidemiology and Infection,1989,102(1): 129-145.
    [11]
    ATKINS K E, SHIM E, PITZER V E, et al. Impact of rotavirus vaccination on epidemiological dynamics in England and Wales[J]. Vaccine,2012,30(3): 552-564.
    [12]
    OMONDI O L, WANG C C, XUE X P, et al. Modeling the effects of vaccination on rotavirus infection[J]. Advances in Difference Equations,2015(1): 381-392.
    [13]
    KRIBS-ZALETA C M, JUSOT J F, VANHEMS P, et al, Modeling nosocomial transmission of rotavirus in pediatric wards[J]. Bulletin of Mathematical Biology,2011,73(7): 1413-1442.
    [14]
    WHITE L J, COX M J, MEDLEY G F. Cross immunity and vaccination against multiple microparasite strains[J]. IMA Journal of Mathematics Applied in Medicine & Biology,1998,15(3): 211-233.
    [15]
    YOUNG G, SHIM E, ERMENTROUT G B. Qualitative effects of monovalent vaccination against rotavirus: a comparison of North America and South America[J]. Bulletin of Mathematical Biology,2015,77(10): 1854-1885.
    [16]
    黄璜, 单旭征, 龙云淑, 等. 传染病动力学模型在隔离预防轮状病毒医院感染中的应用[J]. 中国感染控制杂志, 2017,16(5): 470-473.(HUANG Huang, SHAN Xuzheng, LONG Yunshu, et al. Application of epidemic dynamics model in isolating hospital-acquired rotavirus infection[J]. China Journal of Infection Control,2017,16(5): 470-473.(in Chinese))
    [17]
    廖书, 杨炜明. 考虑媒体播报效应的双时滞传染病模型[J]. 应用数学和力学, 2017,38(12): 1412-1424.(LIAO Shu, YANG Weiming. An epidemic model with dual delays in view of media coverage[J]. Applied Mathematics and Mechanics,2017,38(12): 1412-1424.(in Chinese))
    [18]
    张双德, 郝海. 一类SARS传染病自治动力系统的稳定性分析[J]. 应用数学和力学, 2005,26(7): 840-846.(ZHANG Shuangde, HAO Hai. Analysis on the stability of an autonomous dynamics system for SARS epidemic[J]. Applied Mathematics and Mechanics,2005,26(7): 840-846.(in Chinese))
    [19]
    FONDA A. Uniformly persistent semidynamical systems[J]. Proceedings of the American Mathematical Society,1988,104(1): 111-116.
    [20]
    SIMITH H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[J]. Mathematical Surveys and Monographs,1995,41(5): 174. DOI: org/10.1090/surv/041.
    [21]
    ZHAO X Q. Dynamical Systems in Population Biology [M]. New York: Springer-Verlag, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1078) PDF downloads(309) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return