Volume 42 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
TANG Hongmei, ZHOU Fuchuan, CHEN Song, WANG Linfeng. Fracture Mechanism of Unstable Rock With Double-Crack Control Discontinuity Subjected to High Earthquake Intensities[J]. Applied Mathematics and Mechanics, 2021, 42(6): 645-655. doi: 10.21656/1000-0887.410187
Citation: TANG Hongmei, ZHOU Fuchuan, CHEN Song, WANG Linfeng. Fracture Mechanism of Unstable Rock With Double-Crack Control Discontinuity Subjected to High Earthquake Intensities[J]. Applied Mathematics and Mechanics, 2021, 42(6): 645-655. doi: 10.21656/1000-0887.410187

Fracture Mechanism of Unstable Rock With Double-Crack Control Discontinuity Subjected to High Earthquake Intensities

doi: 10.21656/1000-0887.410187

The National Natural Science Foundation of China(51378521


  • Received Date: 2020-06-19
  • Rev Recd Date: 2020-10-13
  • Unstable rock in the limestone area has typical characteristics of quasimasonry structure and control discontinuity, where the failure essence is the fracture propagation under loads. The unstable rock control discontinuity in the limestone zone was analyzed, and the geological model for a doublecrack unstable rock mass was obtained according to the theory of geomorphologic evolution. The mechanical model and fracture mechanical model for the complex control discontinuity were constructed. Based on the rock weight, the fissure water pressure and the earthquake load, the formula of the fracture stability coefficient was obtained under the maximum circumferential stress criterion. The fracture stability coefficient expression for the unstable rock is rational according to the verifying case analysis. The fracture stability coefficient corresponding to each intensity decreases with the crack length ratio. Under earthquake intensities Ⅷ and Ⅸ, the unstable rock will collapse; the stability of the unstable rock is liable to the coupling effects of the crack length ratio of the main control discontinuity and the earthquake intensity. The critical crack length ratio decreases with the earthquake intensity. Under earthquake intensity Ⅶ, the theoretical value of the critical crack length ratio is 25.8%, which is slightly less than the actual value of 27.7%, and on the slightly safer side. The fracture stability coefficient expression has good applicability. The research results provide an important theoretical support for the treatment of such unstable rock masses.
  • loading
  • 陈洪凯, 唐红梅, 王林峰, 等. 缓倾角岩质陡坡后退演化的力学机制[J]. 岩土工程学报, 2010,32(3): 468-473.

    (CHEN Hongkai, TANG Hongmei, WANG Linfeng, et al. Mechanical mechanism for retreat evolution of steep rock slopes with gentle dip[J]. Chinese Journal of Geotechnical Engineering,2010,32(3): 468-473.(in Chinese))
    [2]唐红梅, 叶四桥, 陈洪凯. 危岩主控结构面应力强度因子求解分析[J]. 地下空间与工程学报, 2006,2(3): 393-397.(TANG Hongmei, YE Siqiao, CHEN Hongkai. Analysis on solution of stress strength factor of control fissure in unstable rock[J]. Chinese Journal of Underground Space and Engineering,2006,2(3): 393-397.(in Chinese))
    [3]唐红梅, 陈洪凯, 王智, 等. 危岩破坏激振效应试验研究[J]. 岩土工程学报, 2013,35(11): 2117-2122.(TANG Hongmei, CHEN Hongkai, WANG Zhi, et al. Experimental study on excitation effect for unstable rock[J]. Chinese Journal of Geotechnical Engineering,2013,35(11): 2117-2122.(in Chinese))
    [4]周云涛. 三峡库区危岩稳定性断裂力学计算方法[J]. 岩土力学, 2016,37(S1): 495-499.(ZHOU Yuntao. A method for calculating the stability of unstable rocks on three gorges reservoir by fracture mechanics[J]. Rock and Soil Mechanics,2016,〖STHZ〗 37(S1): 495-499.(in Chinese))
    [5]王林峰, 陈洪凯, 唐红梅. 复杂反倾岩质边坡的稳定性分析方法研究[J]. 岩土力学, 2014,35(S1): 181-188.(WANG Linfeng, CHEN Hongkai, TANG Hongmei. Stability analysis method for complex anti-inclined rock slopes[J]. Rock and Soil Mechanics,2014,35(S1): 181-188.(in Chinese))
    [6]LI J, HU B, YAO W M, et al. Stability analysis of toppling failure of the anti-inclined rock slopes[J]. Electronic Journal of Geotechnical Engineering,2016,21(5): 1847-1858.
    [7]ZHAO W, WANG R Q, NIAN T K. Stability analysis of anti-dip rock slopes with flexural toppling failure based on deformation compatibility[J]. Rock Mechanics and Rock Engineering,2020,53: 3207-3221.
    [8]LIU C, JAKSA M, MEYERS A. A transfer coefficient method for rock slope toppling[J]. Canadian Geotechnical Journal,2009,46: 1-9.
    [9]LIU C, JAKSA M, MEYERS A. Toppling mechanisms of rock slopes considering stabilization from the underlying rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2): 348-354.
    [10]周子涵, 陈忠辉, 王建明, 等. 卸荷条件下岩石平行偏置双裂隙的扩展规律研究[J]. 岩土工程学报, 2019,42(4): 721-730.(ZHOU Zihan, CHEN Zhonghui, WANG Jianming, et al. Propagation of offset parallel cracks in rock under unloading conditions[J]. Chinese Journal of Geotechnical Engineering,2019,42(4): 721-730.(in Chinese))
    [11]唐红梅, 舒庆江, 王林峰. 考虑地震力方向的倾倒式危岩可靠度分析[J]. 应用数学和力学, 2020,41(3): 319-328.(TANG Hongmei, SHU Qingjiang, WANG Linfeng. Reliability analysis of perilous toppling rock considering seismic force directions[J]. Applied Mathematics and Mechanics,2020,41(3): 319-328.(in Chinese))
    [12]SCAVIA C. Fracture mechanics approach to stability analysis of rock slopes[J]. Engineering Fracture Mechanics,1990,35(4/5): 899-910.
    [13]MICHALOWSKI R L, PARK D. Stability assessment of slopes in rock governed by the Hoek-Brown strength criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2020,127: 104-217.
    [14]王曼灵, 王爱涛, 李阳, 等. 基于FEMLIP的全风化边坡失稳破坏全过程的数值模拟研究[J]. 应用数学和力学, 2019,40(3): 269-281.(WANG Manling, WANG Aitao, LI Yang, et al. Numerical simulation of the whole instability and destruction process for fully weathered slopes based on the FEMLIP[J]. Applied Mathematics and Mechanics,2019,40(3): 269-281.(in Chinese))
    [15]杨忠平, 刘树林, 刘永权, 等. 反复微震作用下顺层及反倾岩质边坡的动力稳定性分析[J]. 岩土工程学报, 2018,40(7): 1277-1286.(YANG Zhongping, LIU Shulin, LIU Yongquan, et al. Dynamic stability analysis of bedding and toppling rock slopes under repeated micro-seismic action[J]. Chinese Journal of Geotechnical Engineering,2018,40(7): 1277-1286.(in Chinese))
    [16]杨忠平, 来云亮, 刘树林, 等. 频发微震下上覆软弱岩体边坡动力稳定及失稳模式[J]. 岩土工程学报, 2019,40(7): 2297-2306.(YANG Zhongping, LAI Yunliang, LIU Shulin, et al. Dynamic stability and failure mode of slopes with overlying weak rock mass under frequent micro-seismic actions[J]. Chinese Journal of Geotechnical Engineering,2019,40(7): 2297-2306.(in Chinese))
    [17]何思明, 吴永, 李新坡. 地震诱发岩体崩塌的力学机制[J]. 岩石力学与工程学报, 2010,29(S1): 3359-3363.(HE Siming, WU Yong, LI Xinpo. Collapse mechanism of danger rock triggered by earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S1): 3359-3363.(in Chinese))
    [18]何思明, 吴永, 李新坡. 强震荷载下裂缝岩体拉剪破坏机理[J]. 工程力学, 2012,29(4): 178-184.(HE Siming, WU Yong, LI Xinpo. Failure mechanism of unstable rock under seismic tension-shear action[J]. Engineering Mechanics,2012,29(4): 178-184.(in Chinese))
    [19]李傲赢, 蒋良潍, 罗强, 等. 国内工程行业规范中的地震作用对比分析[J]. 建筑结构, 2019,49(S2): 344-349.(LI Aoying, JIANG Liangwei, LUO Qiang, et al. Comparative analysis of earthquake action in domestic engineering industry code[J]. Building Structure,2019,49(S2): 344-349.(in Chinese))
    [20]唐红梅, 张旭晨, 王林峰, 等. 川东南灰岩地区陡高边坡的地貌演化研究: 以重庆市金佛山甄子岩为例[J]. 重庆师范大学学报(自然科学版), 2018,35(5): 54-62.(TANG Hongmei, ZHANG Xuchen, WANG Linfeng, et al. Study on the landforms evolution of high cliff in limestone area: taking Zhenziyan cliff of Jinfo Mountain in Chongqing city as an example[J]. Journal of Chongqing Normal University(Natural Science Edition),2018,35(5): 54-62.(in Chinese))
    [21]李佳壕, 吴礼舟. 危岩应力强度因子的计算研究[J]. 工程地质学报, 2013,21(2): 236-242.(LI Jiahao, WU Lizhou. Calculation of stress intensity factors of unstable rock[J]. Journal of Engineering Geology,2013,21(2): 236-242.(in Chinese))
    [22]IRWIN G R. Analysis of stress and strains near the end of a crack extension force[J]. Journal of Applied Mechanics,1957,24: 361-364.
    [23]中国航空研究院. 应力强度因子手册[M]. 增订版. 北京: 科学出版社, 1993.(Chinese Aeronautical Establishment. Manual of Stress Intensity Factor [M]. Enlarged ed. Beijing: Science Press, 1993.(in Chinese))
    [24]陈洪凯, 唐红梅, 王林峰, 等. 危岩崩塌演化理论及应用[M]. 北京: 科学出版社, 2009.(CHEN Hongkai, TANG Hongmei, WANG Linfeng, et al. The Theory and Application of Collapse Evolution of Unstable Rock[M]. Beijing: Science Press, 2009.(in Chinese))
    [25]管辉, 黄炳香, 冯峰. 灰岩试样三点弯曲断裂特性试验研究[J]. 煤炭科学技术, 2012,40(7): 5-9.(GUAN Hui, HUANG Binxiang, FENG Feng. Experiment study on three point bending broken features of limestone sample[J]. Coal Science and Technology,2012,〖STHZ〗 40(7): 5-9.(in Chinese))
    [26]包含, 伍法权, 郗鹏程. 岩石Ⅰ型断裂韧度估算及其影响因素分析[J]. 煤炭学报, 2017,42(3): 604-612.(BAO Han, WU Faquan, XI Pengcheng. Estimation of mode Ⅰ fracture toughness of rock and its impact factors analysis[J]. Journal of China Coal Society,2017,42(3): 604-612.(in Chinese))
    [27]重庆市地质环境监测总站. 地质灾害防治工程设计标准: DBJ50/T-029-2019[S]. 重庆: 重庆市住房和城乡建设委员会, 2020.(Chongqing General Station of Geological Environment Monitoring. Standard for design of geological hazard prevention: DBJ50/T-029-2019[S]. Chongqing: Chongqing Housing and Urban Rural Construction Commission, 2020.(in Chinese))
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (444) PDF downloads(20) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint