Citation: | ZHAO Keke, ZHU Yundie, ZHANG Jiding, JIANG Xiaoyu. Grain Boundary Slip and a Grain Boundary Triple Junction Crack Nucleation Model for Nanocrystals Under the Influence of Hydrogen[J]. Applied Mathematics and Mechanics, 2024, 45(7): 875-885. doi: 10.21656/1000-0887.440257 |
[1] |
WANG L, ZHOU J, ZHANG S, et al. Effects of accommodated grain boundary sliding on triple junction nanovoid nucleation in nanocrystalline materials[J]. Mechanics of Materials, 2014, 71 (4): 10-20.
|
[2] |
FENG H, FANG Q H, ZHANG L C, et al. Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials[J]. International Journal of Plasticity, 2013, 42 (4): 50-64.
|
[3] |
MEIROM R A, CLARK T E, MUHLSTEIN C L. The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films[J]. Acta Materialia, 2012, 60 (3): 1408-1417. doi: 10.1016/j.actamat.2011.11.015
|
[4] |
OVID'KO I A, SHEINERMAN A G, AIFANTIS E C. Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids[J]. Acta Materialia, 2011, 59 (12): 5023-5031. doi: 10.1016/j.actamat.2011.04.056
|
[5] |
JIANG D E, CARTER E A. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals[J]. Acta Materialia, 2004, 52 (16): 4801-4807. doi: 10.1016/j.actamat.2004.06.037
|
[6] |
BARNOUSH A, ASGARI M, JOHNSEN R. Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation[J]. Scripta Materialia, 2012, 66 (6): 414-417. doi: 10.1016/j.scriptamat.2011.12.004
|
[7] |
OVID'KO I A. Review on the fracture processes in nanocrystalline materials[J]. Journal of Materials Science, 2007, 42 (5): 1694-1708. doi: 10.1007/s10853-006-0968-9
|
[8] |
HILLS D A, KELLY P A, DAI D N, et al. Solution of Crack Problems: the Distributed Dislocation Technique[M]. Netherlands: Kluwer Academic Publishers, 2013.
|
[9] |
孙奇, 吴金波, 江晓禹. 次表面分岔裂纹的力学行为[J]. 应用数学和力学, 2023, 44 (12): 1453-1462. doi: 10.21656/1000-0887.440056
SUN Qi, WU Jinbo, JIANG Xiaoyu. Mechanical behavior of subsurface branched cracks[J]. Applied Mathematics and Mechanics, 2023, 44 (12): 1453-1462. (in Chinese) doi: 10.21656/1000-0887.440056
|
[10] |
邢帅兵, 王强胜, 生月, 等. 圆形杂质对裂纹扩展的影响[J]. 应用数学和力学, 2019, 40 (2): 189-199. doi: 10.21656/1000-0887.390136
XING Shuaibing, WANG Qiangsheng, SHENG Yue, et al. Effects of circular inhomogeneity on crack propagation[J]. Applied Mathematics and Mechanics, 2019, 40 (2): 189-199. (in Chinese) doi: 10.21656/1000-0887.390136
|
[11] |
LI X, JIANG X, LI X, et al. Solution of an inclined crack in a finite plane and a new criterion to predict fatigue crack propagation[J]. International Journal of Mechanical Sciences, 2016, 119 : 217-223. doi: 10.1016/j.ijmecsci.2016.10.019
|
[12] |
ZHANG J, SHENG Y, YANG H, et al. Crystal crack dislocation model and microcrack nucleation criterion in the hydrogen environment[J]. European Journal of Mechanics A: Solids, 2023, 98 : 104899. doi: 10.1016/j.euromechsol.2022.104899
|
[13] |
ZHOU G H, ZHOU F X, WAN F R, et al. Molecular dynamics simulation of hydrogen enhancing dislocation emission[J]. Science in China Series E: Technological Sciences, 1998, 145/149 : 123-128.
|
[14] |
CHEREPANOV G P. Mechanics of brittle fracture[J]. Journal of Applied Mechanics, 1982, 49 (4): 932.
|
[15] |
WANG F, WANG C. First-principles investigation of hydrogen embrittlement in polycrystalline Ni3Al[J]. Physical Review B, 1998, 57 (1): 289-295. doi: 10.1103/PhysRevB.57.289
|
[16] |
OVID'KO I A, SHEINERMAN A G, AIFANTIS E C. Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals[J]. Acta Materialia, 2008, 56 (12): 2718-2727. doi: 10.1016/j.actamat.2008.02.004
|
[17] |
LI X J X. Revealing the inhibition mechanism of grain size gradient on crack growth in gradient nano-grained materials[J]. International Journal of Solids and Structures, 2019, 172/173 : 1-9. doi: 10.1016/j.ijsolstr.2019.05.023
|
[18] |
SABNIS P A, MAZIERE M, FOREST S, et al. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals[J]. International Journal of Plasticity, 2012, 28 (1): 102-123.
|
[19] |
LI X, SHEINERMAN A G, YANG H, et al. Theoretical modeling of toughening mechanisms in the CrMnFeCoNi high-entropy alloy at room temperature[J]. International Journal of Plasticity, 2022, 154 : 103304.
|
[20] |
ZHANG F, LIU Y, ZHOU J. The crack nucleation in hierarchically nanotwinned metals[J]. Engineering Fracture Mechanics, 2018, 201 : 29-35.
|
[21] |
WU M S, ZHOU H. An energy analysis of triple junction crack nucleation due to the wedging action of grain boundary dislocations[J]. International Journal of Fracture, 1996, 78 (2): 165-191.
|
[22] |
GIBSON M A, SCHUH C A. Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys[J]. Acta Materialia, 2015, 95 : 145-155.
|
[23] |
NUISMER R J. An energy release rate criterion for mixed mode fracture[J]. International journal of fracture, 1975, 11 (2): 245-250.
|
[24] |
SHIMOKAWA T, TANAKA M, KINOSHITA K, et al. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals[J]. Physical Review B, 2011, 83 (21): 214113.
|