M. D. Sharma. Boundary Conditions for Porous Solids Saturated With Viscous Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(7): 766-776. doi: 10.3879/j.issn.1000-0887.2009.07.002
Citation: M. D. Sharma. Boundary Conditions for Porous Solids Saturated With Viscous Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(7): 766-776. doi: 10.3879/j.issn.1000-0887.2009.07.002

Boundary Conditions for Porous Solids Saturated With Viscous Fluid

doi: 10.3879/j.issn.1000-0887.2009.07.002
  • Received Date: 2008-07-29
  • Rev Recd Date: 2009-04-28
  • Publish Date: 2009-07-15
  • Boundary conditions were derived to represent the continuity requirements at the boundaries of a porous solid saturated with viscous fluid.These were derived from the physically grounded principles with a mathematical check on the conservation of energy.The poroelastic solid is a dissipative one,for the presence of viscosity in inter stitial fluid.The dissipative stresses due to the viscosity of pore-fluid,are well represented in the boundary conditions.The unequal particle motions of two constituents of porous aggregate at a boundary between two solids were explained interms of drainage of pore-fluid leading to imperfect bonding.Mathematical model was derived for the partial connection of surface pores at the porous-porous interface.At this interface,the loose-contact slipping and partial pore opening/connection may dissipate a part of strain energy.Numerical example shows that,at the interface between water and oil-saturated sandstone,the modified boundary conditions do affect the energies of the waves refracting into the isotropic porous medium.
  • loading
  • [1]
    Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅰ:low~frequency range;Ⅱ:higher frequency range[J].J Acoust Soc Am,1956,28(2):168-191. doi: 10.1121/1.1908239
    Biot M A. Mechanics of deformation and acoustic propagation in porous media[J].J Appl Phys,1962,33(4):1482-1498. doi: 10.1063/1.1728759
    Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J].J Acoust Soc Am,1962,34(9A):1254-1264. doi: 10.1121/1.1918315
    Deresiewicz H, Skalak R. On uniqueness in dynamic poroelasticity[J].Bull Seism Soc Am,1963,53(4):793-799.
    Dutta N C, Ode H. Seismic reflections from a gas-water contact[J].Geophysics,1983,48(2):148-162. doi: 10.1190/1.1441454
    Lovera O M. Boundary conditions for a fluid-saturated porous solid[J].Geophysics,1987,52(2):174-178. doi: 10.1190/1.1442292
    De La Cruz V, Spanos T J T.Seismic boundary conditions for porous media[J].J Geophys Res, 1989,94(B3):3025-3029. doi: 10.1029/JB094iB03p03025
    Sharma M D, Saini T N. Pore alignment between two dissimilar saturated poroelastic media:reflection and refraction at the interface[J].Int J Solids Struct,1992,29(11):1361-1377. doi: 10.1016/0020-7683(92)90084-7
    Gurevich B, Schoenberg M. Interface conditions for Biot′s equations of poroelasticity[J].J Acoust Soc Am,1999,105(5):2585-2589. doi: 10.1121/1.426874
    Denneman A I M, Drijkoningen G G, Smeulders D M J,et al.Reflection and transmission of waves at a fluid/porous medium interface[J].Geophysics,2002,67(1):282-291. doi: 10.1190/1.1451800
    Auriault J L. Dynamic behavior of a porous medium saturated by a Newtonian fluid[J]. Int J Engng Sci,1980,18(6):775-785. doi: 10.1016/0020-7225(80)90025-7
    Burridge R, Keller J B. Poroelasticity equations derived from microstructure[J].J Acoust Soc Am,1981,70(4):1140-1147. doi: 10.1121/1.386945
    Pride S R, Gangi A F, Morgan F D. Deriving the equations of motion for porous isotropic media[J].J Acoust Soc Am,1992,92(6):3278-3290. doi: 10.1121/1.404178
    Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid—Ⅲ:reflection of plane waves at a free plane boundary (general case)[J].Bull Seism Soc Am,1962,52(3):595-625.
    Chen J. Time domain fundamental solution to Biot′s complete equations of dynamic poroelasticity—part Ⅰ:two-dimensional solution[J].Int J Solids Struct,1994,31(10):1447-1490. doi: 10.1016/0020-7683(94)90186-4
    Sharma M D. 3-D wave propagation in a general anisotropic poroelastic medium:reflection and refraction at an interface with fluid[J].Geophys J Int,2004,157(2):947-957. doi: 10.1111/j.1365-246X.2004.02226.x
    Sharma M D. Wave propagation in a general anisotropic poroelastic medium with anisotropic permeability:phase velocity and attenuation[J].Int J Solids Struct,2004,41(16/17):4587-4597. doi: 10.1016/j.ijsolstr.2004.02.066
    Morse P M, Feshbach H.Methods of Theoretical Physics[M].New York:McGraw-Hill, 1953.
    Vashisth A K, Sharma M D, Gogna M L. Reflection and transmission of elastic waves at a loosely bonded interface between an elastic solid and liquid-saturated porous solid[J]. Geophys J Int,1991,105(3):601-617. doi: 10.1111/j.1365-246X.1991.tb00799.x
    Borcherdt R D. Reflection-refraction of type-Ⅱ S waves in elastic and inelastic media[J].Bull Seism Soc Am,1977,67:43-67.
    Rasolofosaon P N J, Zinszner B E. Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks[J].Geophysics,2002,67(1):230-240. doi: 10.1190/1.1451647
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1343) PDF downloads(745) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint