J. C. Song. Improved Spatial Decay Bounds in the Plane Stokes Flow[J]. Applied Mathematics and Mechanics, 2009, 30(7): 777-782. doi: 10.3879/j.issn.1000-0887.2009.07.003
Citation: J. C. Song. Improved Spatial Decay Bounds in the Plane Stokes Flow[J]. Applied Mathematics and Mechanics, 2009, 30(7): 777-782. doi: 10.3879/j.issn.1000-0887.2009.07.003

Improved Spatial Decay Bounds in the Plane Stokes Flow

doi: 10.3879/j.issn.1000-0887.2009.07.003
  • Received Date: 2008-12-03
  • Rev Recd Date: 2009-05-04
  • Publish Date: 2009-07-15
  • Spatial decay bounds and a decay rate for the time-dependent Stokes flow of a viscous fluid was investigated in a semi-infinite channel.It is shown how to obtain a near optimal decay rate that is independent of the Reynolds number.It is also shown that a modification of the analysis given by Lin-Song and a somewhat better choice of arbitrary constants yield the decay rate 1.328 which clearly improves upon that 0.91 obtained by Lin.
  • loading
  • [1]
    LIN Chang-hao. Spatial decay estimates and energy bounds for the Stokes flow equation[J].Stability and Appl Anal of Continuous Media,1992,2:249-264.
    [2]
    Knowles J K. An energy estimate for the biharmonic equation and its application to Saint-Venant’s principle in plane elastostatics[J].Indian J Pure Appl Math,1983,14(7):791-805.
    [3]
    Horgan C O,Knowles J K. Recent developments concerning Saint-Venant’s principle[J].Adv Appl Mech,1983,23:179-269. doi: 10.1016/S0065-2156(08)70244-8
    [4]
    Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev,1989,42:295-303. doi: 10.1115/1.3152414
    [5]
    Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update [J].Appl Mech Rev,1996,49(10S):101-111. doi: 10.1115/1.3101961
    [6]
    Horgan C O. Plane entry flows and energy estimates for the Navier-Stokes equations[J].Arch Rat Mech Anal,1978,68(4):359-381.
    [7]
    Horgan C O,Wheeler L T.Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow[J].SIAM J Appl Math,1978,35(1):97-116. doi: 10.1137/0135008
    [8]
    Ames K A,Payne L E,Schaefer P W. Spatial decay estimates in time-dependent Stokes flow[J].SIAM J Math Anal,1993,24(6): 1395-1413. doi: 10.1137/0524081
    [9]
    LIN Chang-hao,Payne L P. Spatial decay bounds in the channel flow of an incompressible viscous fluid[J].Math Models Meth Appl Sci,2004,14(6):795-818. doi: 10.1142/S0218202504003453
    [10]
    LIN Chang-hao,Payne L P.Spatial decay bounds in time-dependent pipe flow of an incompressible viscous fluid[J].SIAM J Appl Math,2004,65(2):458-474. doi: 10.1137/040606326
    [11]
    Horgan C O. Decay estimates for the biharmonic equation with applications to Saint-Venant’s principle in plane elasticity and Stokes flow[J].Quart Appl Math,1989,42(1):147-157.
    [12]
    Song J C. Improved decay estimates in time-dependent Stokes flow[J].J Math Anal Appl,2003,288(2):505-517. doi: 10.1016/j.jmaa.2003.09.007
    [13]
    Vafeades P,Horgan C O.Exponential decay estimates for solutions of the von Kármán equations on a semi-infinite strip[J].Arch Rat Mech Anal,1988,104(1):1-25. doi: 10.1007/BF00256930
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (962) PDF downloads(742) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return