LI Ke, XIE Mao-zhao, LIU Hong. Microscopical and Macroscopical Numerical Study on the Drainage Process in Fabricating Foamed Aluminum[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1453-1462. doi: 10.3879/j.issn.1000-0887.2009.12.006
Citation: LI Ke, XIE Mao-zhao, LIU Hong. Microscopical and Macroscopical Numerical Study on the Drainage Process in Fabricating Foamed Aluminum[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1453-1462. doi: 10.3879/j.issn.1000-0887.2009.12.006

Microscopical and Macroscopical Numerical Study on the Drainage Process in Fabricating Foamed Aluminum

doi: 10.3879/j.issn.1000-0887.2009.12.006
  • Received Date: 2009-02-17
  • Rev Recd Date: 2009-11-11
  • Publish Date: 2009-12-15
  • Velocity field in a single plateau border of aluminum foam during drainage process was studied by a mathematic model for the flow inside a micro-channel.It is shown that the liquid/gas interface mobility,which is characterized by the Newtonian surface viscosity,has substantial effect on velocity inside single plateau border.It's found that at the same liquid/gas interfacial mobility (M)and same radius of curvature,the max velocity inside an exterior plateau border is about 6~8 times as large as that inside an interior plateau border.It's also found that a critical value of the interfacial mobility in interior plateau border,for values greater or less than which the effects of the film thickness on the velocity in plateau border show opposite tendencies.Based on the results from the microscopical model,a new macroscopical drainage model was presented for aluminum foams.Comparisons of computed results by this model with experimental data from the literature and with those from the classical drainage equation show a reasonable agreement.Furthermore,computational results reveal that the liquid holdup of foams is dependent strongly on the value of M and bubble radius.
  • loading
  • [1]
    Lehmhus D,Banhart J,Rodriguez-Perez M A.Adaptation of aluminium foam properties by means of precipitation hardening[J].Materials Science and Technology,2002,18(5):474-479. doi: 10.1179/026708302225002182
    [2]
    Lehmhus D,Banhart J.Properties of heat-treated aluminum foams[J].Materials Science and Engineering A,2003,349(2):98-110. doi: 10.1016/S0921-5093(02)00582-8
    [3]
    Paul E C,Kevin D C.Design of experiments for thermal characterization of metallic foam[J].Journal of Thermophysics and Heat Transfer,2005,19(3):367-374. doi: 10.2514/1.6725
    [4]
    Gergely V,Clyne T W.Drainage in standing liquid metal foams:modeling and experimental observations[J].Acta Material,2004,52(10):3047-3058. doi: 10.1016/j.actamat.2004.03.007
    [5]
    Cox S J,Weair D,Hutzler S,et al.Applications and generalizations of the foam drainage equation[J].The Royal Society,2000,456(2002):2441-2464. doi: 10.1098/rspa.2000.0620
    [6]
    Koehler S A,Hilgenfeldt S,Stone H A.A generalized view of foam drainage:experiment and theory[J].Langmuir,2000,16(15):6327-6341. doi: 10.1021/la9913147
    [7]
    Durand M,Langevin D.Physicochemical approach to the theory of foam drainage[J].Eur Phys J E:Soft Matter and Biological Physics,2002,7(1):35-41. doi: 10.1007/s10189-002-8215-0
    [8]
    Hutzler S,Cox S J,Wang G.Foam drainage in two dimensions[J].Colloids and Surfaces A:Physicochem Eng Aspects,2005,263(3):178-183. doi: 10.1016/j.colsurfa.2005.02.001
    [9]
    Grassia P,Neethling S J,Cervantes C,et al.The growth,drainage and bursting of foams[J].Colloids and Surfaces A:Physicochem Eng Aspects,2006,274(3):110-124. doi: 10.1016/j.colsurfa.2005.08.040
    [10]
    Leonard R A,Lemlich R.A study of interstitial liquid flow in foam[J].AIChE J,1965,11(1):18-24. doi: 10.1002/aic.690110108
    [11]
    Nguyen A V.Liquid drainage in single Plateau borders of foam[J].J Colloid Interface Sci,2002,249(1):194-199. doi: 10.1006/jcis.2001.8176
    [12]
    Koehler S A,Hilgenfeldt S,Stone H A.Foam drainage on the micro scale Ⅰ:modeling flow through single Plateau borders[J].Journal of Colloid and Interface Science,2004,276(2):439-449. doi: 10.1016/j.jcis.2003.12.060
    [13]
    Koehler S A,Hilgenfeldt S,Stone H A.Foam drainage on the micro scale Ⅱ:imaging flow through single Plateau borders[J].Journal of Colloid and Interface Science,2004,276(2):420-438. doi: 10.1016/j.jcis.2003.12.061
    [14]
    Li J,Zhang J,Ge W,et al.Multi-scale methodology for complex systems[J].Chemical Engineering Science,2004,59(8):1687-1700. doi: 10.1016/j.ces.2004.01.025
    [15]
    Stephan A K,Hilgenfeldt S,Eric R W,et al.Drainage of single Plateau borders:direct observation of rigid and mobile interfaces[J].Physical Review E,2000,66(4):040601-1-4.
    [16]
    Magrabi S A,Dlugogorski B Z,Jameson G J.A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams[J].Fire Safety Journal,2002,37(1):21-52. doi: 10.1016/S0379-7112(01)00024-8
    [17]
    WANG Ze-bin,Narsimhan G.Model for Plateau border drainage of power-law fluid with mobile interface and its application to foam drainage[J].Journal of Colloid and Interface Science,2006,300(1),327-337.
    [18]
    Stone H A,Koehler S A,Hilgenfeldt S,et al.Perspectives on foam drainage and the influence of interfacial rheology[J].Journal of Physics:Condensed Matter,2003,15(1):S283-S290.
    [19]
    Saint-Jalmesa A,Zhang Y,Langevin D.Quantitative description of foam drainage:transitions with surface mobility[J].The European Physical Journal E:Soft Matter and Biological Physics,2004,15(1):53-60. doi: 10.1140/epje/i2004-10036-x
    [20]
    Neethling S J,Lee H T,Grassia P.The growth,drainage and breakdown of foams[J].Colloids and Surfaces A:Physicochem Eng Aspects,2005,263(3):184-196. doi: 10.1016/j.colsurfa.2004.12.014
    [21]
    Matzke E B.The three-dimension shape of bubbles in foam—an analysis of the role of surface forces in three-dimensional cell shape determination[J].Am J Botany,1946,33(1):281-289.
    [22]
    Brunke O,Odenbach S.In situ observation and numerical calculations of the evolution of metallic foams[J].J Phys:Condens Matter,2006,18(28):6493-6506. doi: 10.1088/0953-8984/18/28/005
    [23]
    Shen H,Oppenheimer S M,Dunand D C,et al.Numerical modeling of pore size and distribution in foamed titanium[J].Mechanics of Materials,2006,38(10),933-944.
    [24]
    黄晋,孙其诚.液态泡沫渗流的机理研究进展[J],力学进展,2007,37(2):269-278.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1094) PDF downloads(743) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return