H. M. Duwairi, Rebhi. A. Damseh, A. J. Chamkha, Mu'tasim S. Abdel-Jaber. Transient Free Convection Flow of a Visco-Elastic Fluid Over a Vertical Surface[J]. Applied Mathematics and Mechanics, 2010, 31(5): 526-532. doi: 10.3879/j.issn.1000-0887.2010.05.003
Citation: H. M. Duwairi, Rebhi. A. Damseh, A. J. Chamkha, Mu'tasim S. Abdel-Jaber. Transient Free Convection Flow of a Visco-Elastic Fluid Over a Vertical Surface[J]. Applied Mathematics and Mechanics, 2010, 31(5): 526-532. doi: 10.3879/j.issn.1000-0887.2010.05.003

Transient Free Convection Flow of a Visco-Elastic Fluid Over a Vertical Surface

doi: 10.3879/j.issn.1000-0887.2010.05.003
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-01-21
  • Publish Date: 2010-05-15
  • The viscoelsatic boundary layer flow and heat transfer near a verticaliso therm al impermeable surface and in a quiescent fluid were examined. The governing equations were formulated and solved numerically using the MackCormak's technique. A comparison with previously published results on special cases of the problem shows excellent agreement. Represen tative results for the velocity and temperature profiles, boundary layer thicknesses, Nusselt numbers and localsk in friction coefficients are shown graphically for different values of viscoelsatic parameter. Ingeneral, it is found that the velocities in creaseinside the hydrodynamic boundary layers and the temperatures decrease in side the thermal boundary layers for the viscoe lsatic fluid as compared to the Newtonian fluid due to favorable tensile stresses. Consequently the coefficient of friction and heat transfer are enhanced for higher viscoe lsatic parameter.
  • loading
  • [1]
    Rajagopal K R, Na T Y, Gupta A S. Flow of a viscoelsatic fluid over a stretching sheet[J]. Rheol Acta, 1984, 23: 213-215. doi: 10.1007/BF01332078
    [2]
    Rajagopal K R, Na T Y, Gupta A S. A non-similar boundary layer on a stretching sheet in a non-Newtonian fluid with uniform free stream[J]. J Math Phys Sci, 1987, 21(2): 189-200.
    [3]
    Dandapat B S, Gupta A S. Flow and heat transfer in a viscoelsatic fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1989, 24(3): 215-219. doi: 10.1016/0020-7462(89)90040-1
    [4]
    Rollins D, Vajravelu K. Heat transfer in a second-order fluid over a continuous stretching surface[J]. Acta Mech, 1991, 89(1/4): 167-178. doi: 10.1007/BF01171253
    [5]
    Anderson H I. MHD flow of a viscoelsatic fluid past a stretching surface[J]. Acta Mech, 1992, 95: 227-230. doi: 10.1007/BF01170814
    [6]
    Lawrence P S, Rao B N. Heat transfer in the flow of a viscoelsatic fluid over a stretching sheet[J]. Acta Mech, 1992, 93: 53-61. doi: 10.1007/BF01182572
    [7]
    Char M I. Heat and mass transfer in a hydromagnetic flow of viscoelsatic fluid over a stretching sheet[J]. J Math Anal Appl, 1994, 186(3): 674-689. doi: 10.1006/jmaa.1994.1326
    [8]
    Rao B N. Flow of a second grade fluid over stretching sheet[J]. Int J Non-Linear Mech, 1996, 31(4): 547-550. doi: 10.1016/0020-7462(96)00009-1
    [9]
    Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids[M]. Vol 1. 2nd ed. New York: John Wiley and Sons Inc, 1987.
    [10]
    Sakiadis B. Boundary layer behavior on continuous solid surface: the boundary layer on a continuous flat surface[J]. AIChE J, 1961, 7(1): 221-227. doi: 10.1002/aic.690070211
    [11]
    Schlichting H. Boundary Layer Theory[M]. 6th ed. New York: McGraw-Hill, 1964.
    [12]
    Van Dyke M. Perturbation Methods in Fluid Mechanics[M]. New York: Academic Press, 1964.
    [13]
    Shawaqfah M S, Damseh Rebhi A, Chamkha A J, et al. Forced convection of Blasius flow of “second-grade” visco-elastic fluid[J]. Int J Heat and Technology, 2007, 25(1):145-151.
    [14]
    Damseh Rebhi A, Shatnawi Anis A, Chamkha A J, et al. Transient mixed convection flow of a second-grade visco-elastic fluid over vertical surfaces[J]. Nonlinear Analysis: Modeling and Control, 2008, 13(2): 169-179.
    [15]
    Coleman B D, Noll W. An approximation theorem for functionals with applications in continuum mechanics[J]. Arch Rat Mech Anal, 1960, 6(1): 355-370. doi: 10.1007/BF00276168
    [16]
    Fosdick R L, Rajagopal K R. Anomalous features in the model of second order fluids[J]. Arch Rational Mech Anal, 1979, 70(2): 145-152.
    [17]
    Cortell Rafael. Similarity solutions for flow and heat transfer of a viscoelsatic fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1994, 29(2): 155-161. doi: 10.1016/0020-7462(94)90034-5
    [18]
    Rollins D, Vajravelu K. Heat transfer in a second grade fluid over a continuous stretching surface[J]. Acta Mech, 1991, 89: 167-178. doi: 10.1007/BF01171253
    [19]
    Khan S K, Sanjayanad E. Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet[J]. Int J Heat Mass Transfer, 2005, 48(8): 1534-1542. doi: 10.1016/j.ijheatmasstransfer.2004.10.032
    [20]
    Sadeghy K, Sharfi M. Local similarity for the flow of a “second-grade” viscoelastic fluid above a moving plate[J]. Int J Non-Linear Mech, 2004, 39(8): 1265-1273. doi: 10.1016/j.ijnonlinmec.2003.08.005
    [21]
    Anderson A D. Computational Fluid Dynamics[M]. Chap 6. New York: McGraw-Hill, 1995.
    [22]
    Duwairi H M, Chamkha A J. Transient free convection flow of a micropolar fluid over a vertical surface[J]. Int J Fluid Mechanics Research, 2005, 32(3): 255-268. doi: 10.1615/InterJFluidMechRes.v32.i3.10
    [23]
    Duwairi H M, Damseh Rebhi A, Tashtoush Bourhan. Transient non-Boussinesq MHD-free convection flows over a vertical surface[J]. Int J Fluid Mechanics Research, 2006, 33(2): 152-173.
    [24]
    Oosthuizen P H, Naylor D. An Introduction to Convective Heat Transfer[M]. New York: McGraw-Hill, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1555) PDF downloads(643) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return