HE Guo-yi, ZHANG Shu-guang, ZHANG Xing. Thrust Generation and Wake Structure of a Wiggling Hydrofoil[J]. Applied Mathematics and Mechanics, 2010, 31(5): 553-560. doi: 10.3879/j.issn.1000-0887.2010.05.006
Citation: HE Guo-yi, ZHANG Shu-guang, ZHANG Xing. Thrust Generation and Wake Structure of a Wiggling Hydrofoil[J]. Applied Mathematics and Mechanics, 2010, 31(5): 553-560. doi: 10.3879/j.issn.1000-0887.2010.05.006

Thrust Generation and Wake Structure of a Wiggling Hydrofoil

doi: 10.3879/j.issn.1000-0887.2010.05.006
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-04-06
  • Publish Date: 2010-05-15
  • A wiggling motion is often used by marine anmials and micro-machines to generate thrust. The wiggling motion can be modeled by aprogressive wave where its wavelength describes the flexibility of wiggling anmials. In the present study, animmersed boundary method was used to smiulate the flows around the wiggling hydrofoil NACA-65-010 at low Reynolds numbers. It is found from the numerical s im ulations that the thrust generation is largely determined by the wave length: The thrust coefficients decrease with increasing the wavelength while the propulsive efficiency reaches maxmium at acertain wave length. The latter is due to the viscous effects. The thrust generation is associated with two different flow patterns in the wake: the well-known reversed Krmn vortex streets and the vortex dipoles. Both of them are jettype flows where the thrust coefficients associated with the reversed Krmn vortex streets are larger than the ones associated with vortex diploes.
  • loading
  • [1]
    Lighthill M J. Note on the swimming of slender fish[J]. Journal Fluid Mechanics, 1960, 9(2):305-317. doi: 10.1017/S0022112060001110
    Lighthill M J. Hydromechanics of aquatic animal propulsive[J]. Annual Review Fluid Mechanics, 1969, 1(1):413-466. doi: 10.1146/annurev.fl.01.010169.002213
    Freyumth P. Propulsive vortical signature of plunging and pitching airfoils[J]. AIAA Journal, 1988, 26(7):881-883. doi: 10.2514/3.9982
    Jones K D, Dohring C M, Platzer M F. Experimental and computational investigation of the Knoller-Betz effect[J]. AIAA Journal, 1998, 36(7):1240-1246. doi: 10.2514/2.505
    Jones K D, Castro B M, Mahmoud O, et al. A collaborative numerical and experimental investigation of flapping-wing propulsion[C]AIAA Paper 0706.40th Aerospace Sciences Meeting & Exhibit, Reno, NV, 2002.
    Lighthill M J. Large-amplitude elongate-body theory of fish locomotion[J].Proceedings of the Royal Society of B, London: Biological Science, 1971, 179: 125-138. doi: 10.1098/rspb.1971.0085
    Wu T Y. Hydrodynamics of swimming propulsion[J]. Journal Fluid Mechanics,1971, 46(2):521-544. doi: 10.1017/S0022112071000685
    Newman J N. The force on a slender fish-like body[J]. Journal Fluid Mechanics, 1973, 58(4):689-702. doi: 10.1017/S0022112073002429
    Cheng J Y, Zhuang L X, Tong B G. Analysis of swimming 3-D waving plate[J]. Journal Fluid Mechanics, 1991, 232(11):341-355. doi: 10.1017/S0022112091003713
    Trianafyllou G S, Trianafyllou M S, Grosenbaugh M A. Optimal thrust development in oscillating foils with application to fish propulsive[J]. Journal Fluids Structure, 1993, 7(2):205-224. doi: 10.1006/jfls.1993.1012
    Trianafyllou M S, Trianafyllou G S. An efficient swimming machine[J]. Science American, 1995, 272(3):1-6.
    Yang Y H, Yin X Z, Lu X Y. Flow visualization over a 2-D traveling wave wall[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):84-90.
    Dong G J, Lu X Y. Numerical analysis on the propulsive performance and vortex shedding of fish-like traveling wavy plat[J]. International Journal for Numerical Methods in Fluids, 2005, 48(12):351-373.
    童秉刚,孙茂,尹协振. 飞行和游动生物流体力学的国内研究进展概述[J]. 自然杂志, 2003, 27(4):191-198.
    王亮,王明, 吴锤结. 自由推进俯仰震荡翼型的数值模拟研究[J]. 固体力学学报, 2006, 27(SI):110-114.
    Li L, Yin Z X. Experiments on propulsive characteristics of the caudal-fin models of carangiform fish in cruise[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):1-5.
    Uchiyama T, Kikuyama K. Numerical simulation for the propulsive performance of a submerged wiggling micromachine[J]. Journal of Micromechanics and Microengineering, 2004, 14(11):1537-1543. doi: 10.1088/0960-1317/14/11/015
    Mittal R, Iaccarino G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
    Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. Journal Computational Physics, 2001, 171(1):132-150. doi: 10.1006/jcph.2001.6778
    Su S W, Lai M C, Lin C A. An immersed boundary technique for simulating complex flows with rigid boundary[J]. Computers and Fluids, 2007, 36(2):313-324.
    Uhlmann M. An immersed boundary method with direct forcing for the simulation of particular flows[J]. Journal of Computational Physics, 2005, 209 (2):448-476. doi: 10.1016/j.jcp.2005.03.017
    Akimoto H, Miyata H. Finite-volume simulation of a flow about a moving body with deformation[C]Proc 5th Int Symp Comp Fluid Dynamics, 1. Sendai, Japan, 1993: 13-18.
    Lai M C, Peskin C S. An immersed boundary method with formal second order accuracy and reduced numerical viscosity[J]. Journal of Computational Physics, 2000, 160(2):705-719. doi: 10.1006/jcph.2000.6483
    Pan H, Damodaran M. Parallel computation of viscous incompressible flows using Godunov-projection method on overlapping grids[J]. International Journal for Numerical Methods in Fluids, 2002, 39(5):441-463. doi: 10.1002/fld.339
    Henderson R D. Details of the drag curve near the onset of vortex shedding[J]. Physics of Fluids, 1995, 7(9):2102-2104. doi: 10.1063/1.868459
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1124) PDF downloads(851) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint