| Citation: | REN Jiu-sheng, YUAN Xue-gang. Mechanics of the Formation and Rupture of Human Aneurysms[J]. Applied Mathematics and Mechanics, 2010, 31(5): 561-572. doi: 10.3879/j.issn.1000-0887.2010.05.007 | 
	                | [1] | 
					 Humphrey J D. Cardiovascular Solid Mechanics, Cells, Tissures and Organs[M]. New York: Springer-Verlag, 2002. 
					
					 | 
			
| [2] | 
					 Vorp D A. Biomechanics of abdominal aortic aneurysm[J]. J Biomech, 2007, 40(9): 1887-1902. doi:  10.1016/j.jbiomech.2006.09.003 
					
					 | 
			
| [3] | 
					 Volokh K Y, Vorp D A. A model of growth and rupture of abdominal aortic aneurysm[J]. J Biomech, 2008, 41(5): 1015-1021. doi:  10.1016/j.jbiomech.2007.12.014 
					
					 | 
			
| [4] | 
					 Humphrey J D. Continuum biomechanics of soft biological tissues[J]. Proc R Soc A, 2003, 459(1): 1-44. doi:  10.1098/rspa.2002.1109 
					
					 | 
			
| [5] | 
					 Watton P N, Hill N A, Heil M. A mathematical model for the growth of abdominal aortic aneurysm[J]. Biomechan Model Mechanobiol, 2004, 3(1): 98-113. doi:  10.1007/s10237-004-0052-9 
					
					 | 
			
| [6] | 
					 Humphrey J D. Intracranial saccular aneurysms[C]Biomechanics of Soft Tissue in Cardiovascular Systems. New York: Springer Wien, 2003. 
					
					 | 
			
| [7] | 
					 David G, Humphrey J D. Further evidence for the dynamic stability of intracranial saccular aneurysms[J]. J Biomech, 2003, 36(7): 1043-1150. doi:  10.1016/S0021-9290(03)00034-4 
					
					 | 
			
| [8] | 
					 Humphrey J D, Canham P B. Structure, mechanical properties and mechanics of intracranial saccular aneurysms[J]. J Elasticity, 2000, 61(1): 49-81. doi:  10.1023/A:1010989418250 
					
					 | 
			
| [9] | 
					 Kroon M, Holzapfel G A. Estimation of the distributions of anisotropic, elastic properties and wall stresses of saccular cerebral aneurysms by inverse analysis[J]. Proceedings of the Royal Society A, 2008, 464(6): 807-825. doi:  10.1098/rspa.2007.0332 
					
					 | 
			
| [10] | 
					 Holzapfel G A, Gasser T C, Stadler M. Structural model for the viscoelastic behavior of arterial walls, continuum formulations and finite element analysis[J]. Eur J Mech A/Solids, 2002, 21(3): 441-463. doi:  10.1016/S0997-7538(01)01206-2 
					
					 | 
			
| [11] | 
					 Taber L A. Nonlinear Theory of Elasticity: Applications in Biomechanics[M]. NJ: World Scientific, River Edge, 2004. 
					
					 | 
			
| [12] | 
					 Holzapfel G A, Gasser T C, Ogden R W. A new constitutive framework for arterial wall mechanics and a comparative study of material models[J]. J Elasticity, 2000, 61(1): 1-48. doi:  10.1023/A:1010835316564 
					
					 | 
			
| [13] | 
					 Holzapfel G A, Sommer G, Regitnig P. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques[J]. J Biomech Eng, 2004, 126(5): 657-665. doi:  10.1115/1.1800557 
					
					 | 
			
| [14] | 
					 Driessen N J B, Wilson W, Bouten C V C, et al. A computational model for collagen fiber remodeling in the arterial wall[J]. J Theoretical Biology, 2004, 226(1): 53-64. doi:  10.1016/j.jtbi.2003.08.004 
					
					 | 
			
| [15] | 
					 Gasser T C, Ogden R W, Holzapfel G A. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations[J]. J R Soc Interface, 2006, 3(1): 15-35. doi:  10.1098/rsif.2005.0073 
					
					 | 
			
| [16] | 
					 Vito R P, Dixon S A. Blood vessel constitutive models-1995-2002[J]. Annu Rev Biomed Eng, 2003, 5(4): 413-439. doi:  10.1146/annurev.bioeng.5.011303.120719 
					
					 | 
			
| [17] | 
					 Fung Y C. Biomechanics: Motion, Flow, Stress and Growth[M]. New York :Springer-Verlag, 1990. 
					
					 | 
			
| [18] | 
					 Baek S, Gleason R L, Rajagopal K R, et al. Theory of small on large; potential utility in computations of fluid-solid interactions in arteries[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(15) 3070-3078. 
					
					 | 
			
| [19] | 
					 Masson I, Boutouyrie P, Laurent S, et al. Characterization of arterial wall mechanical behavior and stresses from human clinical data[J]. J Biomech, 2008, 41(12): 2618-2627. doi:  10.1016/j.jbiomech.2008.06.022 
					
					 | 
			
| [20] | 
					 Vena P, Gastadi D, Socci L, et al. An anisotropic model for tissue growth and remodeling during early development of cerebral aneurysms[J]. Computational Materials Science, 2008, 43(3): 565-577. doi:  10.1016/j.commatsci.2007.12.023 
					
					 | 
			
| [21] | 
					 Baek S, Rajagopal K R, Humphrey J D. A theoretical model of enlarging intracranial fusiform aneurysm[J]. J Biomechanical Engineering, 2006, 128(1): 142-149. doi:  10.1115/1.2132374 
					
					 | 
			
| [22] | 
					 Haughton D M. Ogden R W. On the incremental equations in non-linear elasticity—Ⅱ: Bifurcation of pressurized spherical shells[J]. J Mech Phys Solids, 1978, 26(1): 111-138. doi:  10.1016/0022-5096(78)90017-0 
					
					 | 
			
| [23] | 
					 Kroon M, Holzapfel G A. A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms[J]. J Theoretical Biology, 2009, 257(1): 73-83. doi:  10.1016/j.jtbi.2008.10.021 
					
					 | 
			
| [24] | 
					 Holzapfel G A, Gasser T C. Computational stress-deformation analysis of arterial wall including high-pressure response[J]. Int J Cardiology, 2007, 116(1): 78-85. doi:  10.1016/j.ijcard.2006.03.033 
					
					 |