LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Simply-Supported Trapezoidal Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2010, 31(5): 602-608. doi: 10.3879/j.issn.1000-0887.2010.05.011
Citation: LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Simply-Supported Trapezoidal Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2010, 31(5): 602-608. doi: 10.3879/j.issn.1000-0887.2010.05.011

Quasi-Green’s Function Method for Free Vibration of Simply-Supported Trapezoidal Shallow Spherical Shell

doi: 10.3879/j.issn.1000-0887.2010.05.011
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-03-25
  • Publish Date: 2010-05-15
  • The idea of quasi Green's function method was clarified in detail by considering a free vibration problem of smiply-supported trapezoidal shallow spherical shell. A quasi-Green's function was established by using the fundamental solution and boundary equation of the problem. This function satis fies the homogeneous boundary condition of the problem. The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell is reduced to two smiultaneous Fredholm in tegral equations of the second kind by Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equation, a new normalized boundary equation can be established such that the irregularity of the kernel of in tegral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a non trivial solution in the numerically discrete algebraic equations derived from the in tegral equations. Numerical results show highaccuracy of the quasi-Green's function method.
  • loading
  • [1]
    Рвачев В Л. Теория R-Функции и Некторые ее Приложения[M]. Киев: Наук Думка, 1982: 415-421.
    [2]
    袁鸿. Winkler地基上薄板问题的准格林函数方法[J]. 计算力学学报, 1999,16(4):478-482.
    [3]
    王红, 袁鸿.准格林函数方法在弹性扭转问题中的应用[J]. 华南理工大学学报(自然科学版), 2004, 32(11):86-88.
    [4]
    王红,袁鸿.R-函数理论在梯形截面柱弹性扭转问题中的应用[J]. 华中科技大学学报(自然科学版), 2005, 33(11):99-101.
    [5]
    袁鸿, 李善倾, 刘人怀. Pasternak地基上简支板振动问题的准格林函数方法[J]. 应用数学和力学, 2007, 28(7):757-762.
    [6]
    陈家瑾. 四边固支球面扁壳的振动解析法[J].工程力学, 1993, 10(2):61-71.
    [7]
    Ortner V N.Regularisierte faltung von distributionen.Teil 2: Eine tabelle von fundamentallocunngen [J]. ZAMP, 1980, 31(1):155-173. doi: 10.1007/BF01601710
    [8]
    Kurpa L V. Solution of the problem of deflection and vibration of plates by the R-function method [J].Sov Appl Mech, 1984, 20(5): 470-473. doi: 10.1007/BF00885200
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1434) PDF downloads(694) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return