SUN Wen-hua, SHENG Wan-cheng. Riemann Problem for the Nonlinear Degenerate Wave Equations[J]. Applied Mathematics and Mechanics, 2010, 31(6): 639-648. doi: 10.3879/j.issn.1000-0887.2010.06.001
Citation: SUN Wen-hua, SHENG Wan-cheng. Riemann Problem for the Nonlinear Degenerate Wave Equations[J]. Applied Mathematics and Mechanics, 2010, 31(6): 639-648. doi: 10.3879/j.issn.1000-0887.2010.06.001

Riemann Problem for the Nonlinear Degenerate Wave Equations

doi: 10.3879/j.issn.1000-0887.2010.06.001
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-10
  • Publish Date: 2010-06-15
  • The Riemann problem for a non linear degenerate wave equation system in elasticity was considered. Since the stress function was not convex or concave, the shock condition was degenerate. By in troducing a degenerate shock under the generalized shock condition, the global solutions were constructively obtained case by case.
  • loading
  • [1]
    LU Yun-guang. Nonlinearly degenerate wave equation vtt=c(|v|s-1v)xx[J].Rev Axad Colomb Cienc, 2007, 119(31): 275-283.
    [2]
    Smoller J.Shock Waves and Reaction-Diffusion Equations[M].New York: Springer-Verlag, 1992.
    [3]
    Nishihara K.Stability of traveling waves with degenerate shock for system of one-dimensional viscoelastic model[J].J Diff Equations, 1995, 120(2): 304-318. doi: 10.1006/jdeq.1995.1114
    [4]
    Hoff D.Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations[J].SIAM J Numer Anal, 1978, 15(6): 1161-1177. doi: 10.1137/0715077
    [5]
    HUANG Fei-min, WANG Zhen.Convergence of viscosity solutions for isentropic gas dynamics[J].SIAM J Math Anal, 2003, 34(3):595-610.
    [6]
    Kawashima S, Matsumura A. Stability of shock profiles in viscoelasticity with nonconvex constitutive relations[J].Comm Pure Appl Math, 1994, 47(12): 1547-1569. doi: 10.1002/cpa.3160471202
    [7]
    LU Yun-guang.Existence of a global solution for a viscoelastic system[J].J Math Anal Appl, 1998, 218(1):175-182. doi: 10.1006/jmaa.1997.5754
    [8]
    Matsumura A, Nishihara K. Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity[J].Commun Math Phys, 1994, 165(1): 83-96. doi: 10.1007/BF02099739
    [9]
    ZHU Chang-jiang.Convergence of the viscosity solutions for the system of nonlinear elasticity[J].J Math Anal Appl, 1997, 209(2): 585-604. doi: 10.1006/jmaa.1997.5372
    [10]
    CHANG Tong, HSIAO Ling.The Riemann Problem and Interaction of Waves in Gas Dynamics[M]. Pitman Monographs. Essex: Longman Scientific and Technical, 1989.
    [11]
    Courant R, Friedrichs K.Supersonic Flow and Shock Waves[M]. New York: Wiley-Interscience, 1948.
    [12]
    Lax P D.Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[M].Philadelphia: SIAM, 1973.
    [13]
    YANG Han-chun, SUN Wen-hua.The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws[J].Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(11): 3041-3049.
    [14]
    SUN Wen-hua, SHENG Wan-cheng.The non-selfsimilar Riemann problem for 2-D zero-pressure flow in gas dynamics[J].Chin Ann Math B, 2007, 28(6): 701-708. doi: 10.1007/s11401-006-0224-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1753) PDF downloads(776) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return