YANG Zhong-hua, GAO Wei, HUAI Wen-xin. Study on the Secondary Flow Coefficient of Overbank Flow[J]. Applied Mathematics and Mechanics, 2010, 31(6): 681-689. doi: 10.3879/j.issn.1000-0887.2010.06.005
Citation: YANG Zhong-hua, GAO Wei, HUAI Wen-xin. Study on the Secondary Flow Coefficient of Overbank Flow[J]. Applied Mathematics and Mechanics, 2010, 31(6): 681-689. doi: 10.3879/j.issn.1000-0887.2010.06.005

Study on the Secondary Flow Coefficient of Overbank Flow

doi: 10.3879/j.issn.1000-0887.2010.06.005
  • Rev Recd Date: 2010-03-25
  • Publish Date: 2010-06-15
  • The 2-D analytical solution for tran sverse velocity distribution in compound open channels was presented based on the Shiono and Knight method, in which the secondary flow coefficient was introduced to take account in to the effect of the secondary flow. The modeling results agree well with the expermiental results from science and engineering research council-flood channel facility (SERC-FCF), based on which the effect of geography on the secondary flow coefficient is analyzed, as well as the essential reason for such effects. The modeling results show that the in tensity of the secondary flow is related with the geometry of the compound channel section, and the sign of Kvalue is related with the rotating direction of the secondary flow cell, which proposes scien tific reference for the selecting of Kvalue.
  • loading
  • [1]
    Yang K, Cao S, Knight D W. Flow patterns in compound channels with vegetated floodplains[J]. Journal of Hydraulic Engineering, 2007, 133(2): 148-159. doi: 10.1061/(ASCE)0733-9429(2007)133:2(148)
    [2]
    张明亮, 沈永明, 吴修广, 郑永红. 复式断面三维漫滩水流的数值模拟[J]. 水力发电学报, 2006, 25(5): 31-36.
    [3]
    槐文信, 陈文学, 童汉毅. 漫滩恒定明渠水流的三维数值模拟[J]. 水科学进展, 2003, 14(1): 15-19.
    [4]
    Krishnappan B G, Lau Y L. Turbulence modeling of flood plain flows[J]. Journal of Hydraulic Engineering, 1986, 112(4): 251-266. doi: 10.1061/(ASCE)0733-9429(1986)112:4(251)
    [5]
    Ervine D A, Babaeyan-Koopaei K, Sellin R H J. Two-dimensional solution for straight and meandering overbank flows[J]. Journal of Hydraulic Engineering, 2000, 126(9): 653-669. doi: 10.1061/(ASCE)0733-9429(2000)126:9(653)
    [6]
    Shiono K, Knight D W. Turbulent open-channel flows with variable depth across the channel[J]. Journal of Fluid Mechanics, 1991, 222: 617-646. doi: 10.1017/S0022112091001246
    [7]
    槐文信,徐治钢,杨中华,曾玉红. 部分植被化复式河道水流的二维解析解[J]. 应用数学和力学, 2008, 29(8): 976-982.
    [8]
    许唯临. 复式河道漫滩水流计算方法研究[J]. 水利学报, 2001, (6): 21-26.
    [9]
    杨中华, 高伟. 考虑滩槽相互作用的漫滩水流二维解析解[J]. 四川大学学报(工程科学版), 2009, 41(5): 42-46.
    [10]
    Castanedo S, Medina R, Mendez F J. Models for the turbulent diffusion terms of shallow water equations[J]. Journal of Hydraulic Engineering, 2005, 131(3): 217-223. doi: 10.1061/(ASCE)0733-9429(2005)131:3(217)
    [11]
    Abbott M B, Price W A. Coastal, Estuarial, and Harbour Engineers’ Reference Book[M]. London, New York: Taylor & Francis, 1994.
    [12]
    Shome M L, Steffler P M. Lateral flow exchange in transient compound channel flow[J]. Journal of Hydraulic Engineering, 1998, 124(1): 77-80. doi: 10.1061/(ASCE)0733-9429(1998)124:1(77)
    [13]
    Stelling G S, Wiersma A K, Willemse J. Practical aspects of accurate tidal computations[J]. Journal of Hydraulic Engineering, 1986, 112(9): 802-817. doi: 10.1061/(ASCE)0733-9429(1986)112:9(802)
    [14]
    Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model[C]Norman S Heeps. Three-Dimensional Coastal Ocean Models.Washington D C,America: American Geophysical Union, 1987: 1-16.
    [15]
    Roig L C, King I P. Continuum model for flows in emergent marsh vegetation[C] Spaulding M L, Bedford K, Blumberg A, Cheng R, Swanson C. Estuarine and Coastal Modeling. Proceedings of the 2nd International Conference. Tampa, Florida, New York: ASCE, 1992: 268-279.
    [16]
    Hu S, Kot S C. Numerical model of tides in Pearl river estuary with moving boundary[J]. Journal of Hydraulic Engineering, 1997, 123(1): 21-29. doi: 10.1061/(ASCE)0733-9429(1997)123:1(21)
    [17]
    Benque J P, Cunge J A, Feuillet J, Hauguel A, Holly F M J. New method for tidal current computation[J]. Journal of the Waterway Port Coastal and Ocean Division, 1982, 108(3): 396-417.
    [18]
    Darby S E, Colin R T. Predicting stage-discharge curves in channels with bank vegetation[J]. Journal of Hydraulic Engineering, 1996, 122(10): 583-586. doi: 10.1061/(ASCE)0733-9429(1996)122:10(583)
    [19]
    Balzano A. Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models[J]. Coastal Engineering, 1998, 34(1/2): 83-107. doi: 10.1016/S0378-3839(98)00015-5
    [20]
    槐文信,高敏,曾玉红,李丹. 考虑滩地植被的复式断面河道水流的二维解析解[J]. 应用数学和力学, 2009, 30(9): 1049-1056.
    [21]
    Tang X, Knight D W. A general model of lateral depth-averaged velocity distributions for open channel flows[J] .Advances in Water Resources, 2008, 31(5): 846-857. doi: 10.1016/j.advwatres.2008.02.002
    [22]
    Knight D W, Omran M, Tang X. Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows[J]. Journal of Hydraulic Engineering, 2007, 133(1): 39-47. doi: 10.1061/(ASCE)0733-9429(2007)133:1(39)
    [23]
    Mc Gahey C. A practical approach to estimating the flow capacity of rivers[D]. Milton Keynes, UK: Open University, 2006.
    [24]
    Ikeda S. Self-formed straight channels in sandy beds[J]. Journal of the Hydraulics Division, 1981, 107(4): 389-406.
    [25]
    Chlebek J, Knight D W. A new perspective on sidewall correction procedures, based on SKM modelling[C]Rui M L Ferreira, Elsa C T L Alves, Joao G A B Leal, Antonio H Cardosa. Proceedings of the International Conference on Fluvial Hydraulics.Portugal, Lisbon: Taylor & Francis, 2006: 135-144.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1642) PDF downloads(971) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return