CHAI Yuan, LÜ Ling, ZHAO Hong-yan. Lag Synchronization Between Discrete Chaotic Systems With Diverse Structure[J]. Applied Mathematics and Mechanics, 2010, 31(6): 703-709. doi: 10.3879/j.issn.1000-0887.2010.06.007
Citation: CHAI Yuan, LÜ Ling, ZHAO Hong-yan. Lag Synchronization Between Discrete Chaotic Systems With Diverse Structure[J]. Applied Mathematics and Mechanics, 2010, 31(6): 703-709. doi: 10.3879/j.issn.1000-0887.2010.06.007

Lag Synchronization Between Discrete Chaotic Systems With Diverse Structure

doi: 10.3879/j.issn.1000-0887.2010.06.007
  • Received Date: 2009-12-23
  • Rev Recd Date: 2010-04-22
  • Publish Date: 2010-06-15
  • A lag synchron ization controller was designed to discuss discrete chaotic systems with diverse structures and to realize syn chronization between Henon system and Ikeda system. The structure of the lag synchronization controller and the error equations of state variables between discrete chaotic systems were presented on the basis of stability theory. The designed controller had unique structures for different chaotic systems, and lagsynchronization between any discrete chaotic systems with diverse structures could be achieved. The artificial smiulation results show that this control method is effective and feasible.
  • loading
  • [1]
    Lorenz E N. Deterministic nonperiodic flow[J]. J Atmos Sci, 1963, 20(2):130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [2]
    Ott E, Grebogi C, Yorke J A. Controlling chaos[J].Phys Rev Lett, 1990, 64(11):1196-1199. doi: 10.1103/PhysRevLett.64.1196
    [3]
    Pecora L M, Carroll T L. Synchronization in chaotic systems[J].Phys Rev Lett, 1990, 64(8): 821-824. doi: 10.1103/PhysRevLett.64.821
    [4]
    Lü L, Luan L, Guo Z A. Synchronization of chaotic systems of different orders[J].Chin Phys, 2007, 16(2):346-351. doi: 10.1088/1009-1963/16/2/013
    [5]
    Lü L, Guo Z A, Zhang C. Synchronization between two different chaotic systems with nonlinear feedback control[J].Chin Phys, 2007, 16(6):1603-1607.
    [6]
    Kim J H, Park C W, Kim E, Park M. Fuzzy adaptive synchronization of uncertain chaotic systems[J]. Phys Lett A, 2005, 334(4):295-305. doi: 10.1016/j.physleta.2004.11.033
    [7]
    Chen L Q. A general formalism for synchronization in finite dimensional dynamical systems[J]. Chaos,Solitons and Fractals, 2004, 19(5):1239-1242. doi: 10.1016/S0960-0779(03)00325-4
    [8]
    Wang Y W, Guan Z H, Wang H O. Impulsive synchronization for Takagi-Sugeno fuzzy model and its application to continuous chaotic system[J]. Phys Lett A, 2005, 339(3/5):325-332. doi: 10.1016/j.physleta.2005.03.039
    [9]
    Tsimring L S, Rulkov N F, Larsen M L, Gabbay M. Repulsive synchronization in an array of phase oscillators[J]. Phys Rev Lett, 2005, 95(1):14101-14104. doi: 10.1103/PhysRevLett.95.014101
    [10]
    Deng X L, Huang H B. Spatial periodic synchronization of chaos in coupled ring and linear arrays of chaotic systems[J].Phys Rev E, 2002, 65(5):55202-55204. doi: 10.1103/PhysRevE.65.055202
    [11]
    Kocarev L, Parlitz U, Brown R. Robust synchronization of chaotic systems[J]. Phys Rev E, 2000, 61(4):3716- 3720. doi: 10.1103/PhysRevE.61.3716
    [12]
    Lü L, Guo Z A, Li Y, Xia X L. Parameter identification and Backstepping design of synchronization controller in uncertain chaotic system[J]. Acta Phys Sin, 2007, 56(1):95-100.
    [13]
    Li Y, Liao X F, Li C D, Chen G. Impulsive control for synchronization of a nonlinear Rossler chaotic systems [J]. Chin Phys, 2006, 15(12):2890-2893. doi: 10.1088/1009-1963/15/12/021
    [14]
    Liu S T,Chen G R.Nonlinear feedback-controlled generalized synchronization of spatial chaos[J].Chaos, Solitons and Fractals, 2004, 22(1):35-46. doi: 10.1016/j.chaos.2003.12.024
    [15]
    Awad E G. Optimal synchronization of Rossler system with complete uncertain parameters[J]. Chaos,Solitons and Fractals, 2006, 27(2):345-355. doi: 10.1016/j.chaos.2005.03.043
    [16]
    Huang L, Feng R, Wang M. Synchronization of chaotic systems via nonlinear control[J]. Phys Lett A, 2004, 320(4):271-275. doi: 10.1016/j.physleta.2003.11.027
    [17]
    Chen L Q, Liu Y Z. An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J]. J Bifurcation and Chaos, 2002, 12(5):1219-1225. doi: 10.1142/S0218127402005066
    [18]
    Lü L. Nonlinear Dynamics and Chaos[M]. Dalian:Dalian Publishing House, 2000:130-133.
    [19]
    Henon M. A two-dimensional mapping with a strange attractor[J].Commun Math Phys, 1976, 50(1): 69-77. doi: 10.1007/BF01608556
    [20]
    Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system[J]. Opt Commun, 1979, 30(2):257-261. doi: 10.1016/0030-4018(79)90090-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1773) PDF downloads(818) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return