Citation: | CHAI Yuan, LÜ Ling, ZHAO Hong-yan. Lag Synchronization Between Discrete Chaotic Systems With Diverse Structure[J]. Applied Mathematics and Mechanics, 2010, 31(6): 703-709. doi: 10.3879/j.issn.1000-0887.2010.06.007 |
[1] |
Lorenz E N. Deterministic nonperiodic flow[J]. J Atmos Sci, 1963, 20(2):130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[2] |
Ott E, Grebogi C, Yorke J A. Controlling chaos[J].Phys Rev Lett, 1990, 64(11):1196-1199. doi: 10.1103/PhysRevLett.64.1196
|
[3] |
Pecora L M, Carroll T L. Synchronization in chaotic systems[J].Phys Rev Lett, 1990, 64(8): 821-824. doi: 10.1103/PhysRevLett.64.821
|
[4] |
Lü L, Luan L, Guo Z A. Synchronization of chaotic systems of different orders[J].Chin Phys, 2007, 16(2):346-351. doi: 10.1088/1009-1963/16/2/013
|
[5] |
Lü L, Guo Z A, Zhang C. Synchronization between two different chaotic systems with nonlinear feedback control[J].Chin Phys, 2007, 16(6):1603-1607.
|
[6] |
Kim J H, Park C W, Kim E, Park M. Fuzzy adaptive synchronization of uncertain chaotic systems[J]. Phys Lett A, 2005, 334(4):295-305. doi: 10.1016/j.physleta.2004.11.033
|
[7] |
Chen L Q. A general formalism for synchronization in finite dimensional dynamical systems[J]. Chaos,Solitons and Fractals, 2004, 19(5):1239-1242. doi: 10.1016/S0960-0779(03)00325-4
|
[8] |
Wang Y W, Guan Z H, Wang H O. Impulsive synchronization for Takagi-Sugeno fuzzy model and its application to continuous chaotic system[J]. Phys Lett A, 2005, 339(3/5):325-332. doi: 10.1016/j.physleta.2005.03.039
|
[9] |
Tsimring L S, Rulkov N F, Larsen M L, Gabbay M. Repulsive synchronization in an array of phase oscillators[J]. Phys Rev Lett, 2005, 95(1):14101-14104. doi: 10.1103/PhysRevLett.95.014101
|
[10] |
Deng X L, Huang H B. Spatial periodic synchronization of chaos in coupled ring and linear arrays of chaotic systems[J].Phys Rev E, 2002, 65(5):55202-55204. doi: 10.1103/PhysRevE.65.055202
|
[11] |
Kocarev L, Parlitz U, Brown R. Robust synchronization of chaotic systems[J]. Phys Rev E, 2000, 61(4):3716- 3720. doi: 10.1103/PhysRevE.61.3716
|
[12] |
Lü L, Guo Z A, Li Y, Xia X L. Parameter identification and Backstepping design of synchronization controller in uncertain chaotic system[J]. Acta Phys Sin, 2007, 56(1):95-100.
|
[13] |
Li Y, Liao X F, Li C D, Chen G. Impulsive control for synchronization of a nonlinear Rossler chaotic systems [J]. Chin Phys, 2006, 15(12):2890-2893. doi: 10.1088/1009-1963/15/12/021
|
[14] |
Liu S T,Chen G R.Nonlinear feedback-controlled generalized synchronization of spatial chaos[J].Chaos, Solitons and Fractals, 2004, 22(1):35-46. doi: 10.1016/j.chaos.2003.12.024
|
[15] |
Awad E G. Optimal synchronization of Rossler system with complete uncertain parameters[J]. Chaos,Solitons and Fractals, 2006, 27(2):345-355. doi: 10.1016/j.chaos.2005.03.043
|
[16] |
Huang L, Feng R, Wang M. Synchronization of chaotic systems via nonlinear control[J]. Phys Lett A, 2004, 320(4):271-275. doi: 10.1016/j.physleta.2003.11.027
|
[17] |
Chen L Q, Liu Y Z. An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J]. J Bifurcation and Chaos, 2002, 12(5):1219-1225. doi: 10.1142/S0218127402005066
|
[18] |
Lü L. Nonlinear Dynamics and Chaos[M]. Dalian:Dalian Publishing House, 2000:130-133.
|
[19] |
Henon M. A two-dimensional mapping with a strange attractor[J].Commun Math Phys, 1976, 50(1): 69-77. doi: 10.1007/BF01608556
|
[20] |
Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system[J]. Opt Commun, 1979, 30(2):257-261. doi: 10.1016/0030-4018(79)90090-7
|