ZHAN Jie-min, LI Yok-sheung, DONG Zhi. Chebyshev Finite Spectral Method With Extended Moving Grids[J]. Applied Mathematics and Mechanics, 2011, 32(3): 365-374. doi: 10.3879/j.issn.1000-0887.2011.03.012
Citation: ZHAN Jie-min, LI Yok-sheung, DONG Zhi. Chebyshev Finite Spectral Method With Extended Moving Grids[J]. Applied Mathematics and Mechanics, 2011, 32(3): 365-374. doi: 10.3879/j.issn.1000-0887.2011.03.012

Chebyshev Finite Spectral Method With Extended Moving Grids

doi: 10.3879/j.issn.1000-0887.2011.03.012
  • Received Date: 2010-01-25
  • Rev Recd Date: 1900-12-30
  • Publish Date: 2011-03-15
  • A Chebyshev finite spectral method on non-uniform mesh was proposed.An equidistribution scheme for two types of extended moving grids was proposed for grid generation.One type of grid was designed to provide better resolution for wave surface.The other type was for highly variable gradients.The method was of high-order accuracy because of the use of Chebyshev polynomial as the basis function.The polynomial was used to interpolate values between the two non-uniform meshes from the previous time step to the current time step.To attain high accuracy in time discretization,the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme was used.To avoid numerical oscillations caused by the dispersion term in the KdV equation,a numerical technique on non-uniform mesh was introduced to improve the numerical stability.The proposed numerical scheme was validated by applications to the Burgers equation (nonlinear convection-diffusion problem) and KdV equation (single solitary and 2-solitary wave problems),where analytical solutions were available for comparison.Numerical results agree very well with the corresponding analytical solutions in all cases.
  • loading
  • [1]
    Adjerid S,Flaherty J E. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations[J]. SIAM Journal on Numerical Analysis, 1986, 23(4): 778-796. doi: 10.1137/0723050
    Anderson D A. Equidistribution schemes, Poisson generators, and adaptive grids[J]. Applied Mathematics and Computation, 1987, 24(3): 211-227. doi: 10.1016/0096-3003(87)90085-3
    Huang W Z, Ren Y H, Russell R D. Moving mesh methods based on moving mesh partial-differential equations[J]. Journal of Computational Physics, 1994, 113(2): 279-290. doi: 10.1006/jcph.1994.1135
    Huang W Z, Russell R D. A moving collocation method for solving time dependent partial differential equations[J]. Applied Numerical Mathematics, 1996, 20(1/2): 101-116. doi: 10.1016/0168-9274(95)00119-0
    Budd C J, Huang W H, Russell R D. Moving mesh methods for problems with blow-up[J]. SIAM Journal on Scientific Computing, 1996, 17(2): 305-327. doi: 10.1137/S1064827594272025
    Huang W Z, Russell R D. Analysis of moving mesh partial differential equations with spatial smoothing[J]. SIAM Journal on Numerical Analysis, 1997, 34(3): 1106-1126. doi: 10.1137/S0036142993256441
    Dorfi E A, Drury L O’C. Simple adaptive grids for 1-D initial value problems[J]. Journal of Computational Physics, 1987, 69(1): 175-195. doi: 10.1016/0021-9991(87)90161-6
    Beckett G, Mackenzie J A, Ramage A, Sloan D M. On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution[J]. Journal of Computational Physics, 2001, 167(2): 372-392. doi: 10.1006/jcph.2000.6679
    Cao W M, Huang W Z, Russell R D. A moving mesh method based on the geometric conservation law[J]. SIAM Journal on Scientific Computing, 2002, 24(1): 118-142. doi: 10.1137/S1064827501384925
    Tang H Z. A moving mesh method for the Euler flow calculations using a directional monitor function[J]. Communications in Computational Physics, 2006, 1(4): 656-676.
    Soheili A R, Stockie J M. A moving mesh method with variable mesh relaxation time[J]. Applied Numerical Mathematics, 2008, 58(3): 249-263. doi: 10.1016/j.apnum.2006.11.014
    Tan Z, Lim K M, Khoo B C. An adaptive moving mesh method for two-dimensional incompressible viscous flows[J]. Communications in Computational Physics, 2008, 3(3): 679-703.
    Li R, Tang T, Zhang P W. Moving mesh methods in multiple dimensions based on harmonic maps[J]. Journal of Computational Physics, 2001,170(2): 562-588. doi: 10.1006/jcph.2001.6749
    Patera A T. A spectral element method for fluid-dynamics - laminar-flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3): 468-488. doi: 10.1016/0021-9991(84)90128-1
    Ghaddar N K, Karniadakis G E, Patera A T. A conservative isoparametric spectral element method for forced convection: application to fully developed flow in periodic geometries[J]. Num Heat Transfer, 1986, 9(3):277-300.
    Giraldo F X. Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations[J]. Computers and Mathematics With Applications, 2003, 45(1/3): 97-121. doi: 10.1016/S0898-1221(03)80010-X
    Liu Y, Vinokur M, Wang Z J. Spectral difference method for unstructured grids I: basic formulation[J]. J Computational Physics, 2006, 216(2): 780-801. doi: 10.1016/j.jcp.2006.01.024
    Liang C, Kannan R, Wang Z J. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids[J]. Computers and Fluids, 2009, 38(2): 254-265. doi: 10.1016/j.compfluid.2008.02.004
    Kopriva D A. A conservative staggered-grid Chebyshev multidomain method for compressible flows: Ⅱ semi-structured method[J]. J Comput Phys, 1996, 128(2):475-488. doi: 10.1006/jcph.1996.0225
    Kopriva D A. A staggered-grid multi-domain spectral method for the Euler and Navier-Stokes equations on unstructured grids[J]. J Comput Phys, 1998, 143(1):125-158. doi: 10.1006/jcph.1998.5956
    Wang J P. Non-periodic fourier tansform and finite spectral method[C]Sixth Inter Symposium in CFD. Nevada, USA, 1995: 1339-1344.
    Wang J P. Finite spectral method based on non-periodic Fourier transform[J]. Computers & Fluids, 1998, 27(5/6): 639-644.
    詹杰民, 李毓湘. 一维Burgers方程和KdV方程的广义有限谱方法[J]. 应用数学和力学, 2006, 27(12):1431-1439.(ZHAN Jie-min, LI Yok-sheung. Generalized finite spectral method for 1D Burgers and KdV equations[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(12): 1635-1643.)
    Li Y S, Zhan J M. Chebyshev finite-spectral method for 1D Boussinesq-type equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, 132(3): 212-223. doi: 10.1061/(ASCE)0733-950X(2006)132:3(212)
    詹杰民, 林东, 李毓湘. 线性与非线性波的Chebyshev广义有限谱模拟[J]. 物理学报, 2007, 56(7): 3649-3654.(ZHAN Jie-min, LIN Dong, LI Yok-sheung. Chebyshev generalized finite spectral method for linear and nonlinear waves[J]. Acta Physica Sinica, 2007, 56(7): 3649-3654. (in Chinese))
    Price T E. Pointwise error estimates for interpolation[J]. Journal of Computational and Applied Mathematics, 1987, 19(3): 389-393. doi: 10.1016/0377-0427(87)90207-X
    Su C H, Gardner C S. Derivation of the Korteweg-de Vries and Burgers-equation[J]. J Math Phys, 1969, 10(3):536-539. doi: 10.1063/1.1664873
    Li Y S, Zhan J M. Boussinesq-type model with boundary-fitted coordinate system[J]. Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 2001, 127 (3):152-160. doi: 10.1061/(ASCE)0733-950X(2001)127:3(152)
    Beji S, Nadaoka K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth[J]. Ocean Engineering, 1996, 23(8): 691-704. doi: 10.1016/0029-8018(96)84408-8
    Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes[M]. New York: Cambridge University Press, 1989: 569-572.
    Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,1995, 121(5): 251-260. doi: 10.1061/(ASCE)0733-950X(1995)121:5(251)
    Kaya D. An application of the decomposition method for the KdVB equation[J]. Applied Mathematics and Computation, 2004, 152(1): 279-288. doi: 10.1016/S0096-3003(03)00566-6
    Dodd R K, Eilbeck J C, Gibbon J D, Morris H C. Solitons and Nonlinear Wave Equations[M]. New York: Academic Press, 1984.
    Li P W. On the numerical study of the KdV equation by the semi-implicit and leap-frog method[J]. Computer Physics Communications, 1995, 88(2/3): 121-127. doi: 10.1016/0010-4655(95)00060-S
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1416) PDF downloads(722) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint