Emily M. Tian, Thomas P. Svobodny, Jason D. Phillips. Thin Liquid Film Morphology Driven by Electro-Static Field[J]. Applied Mathematics and Mechanics, 2011, 32(8): 973-980. doi: 10.3879/j.issn.1000-0887.2011.08.008
Citation: Emily M. Tian, Thomas P. Svobodny, Jason D. Phillips. Thin Liquid Film Morphology Driven by Electro-Static Field[J]. Applied Mathematics and Mechanics, 2011, 32(8): 973-980. doi: 10.3879/j.issn.1000-0887.2011.08.008

Thin Liquid Film Morphology Driven by Electro-Static Field

doi: 10.3879/j.issn.1000-0887.2011.08.008
  • Received Date: 2011-01-17
  • Rev Recd Date: 2011-05-24
  • Publish Date: 2011-08-15
  • The development of stationary patterns on a thin polymer surface subject to an electric field was studied by means of a hexagonal-planform weakly nonlinear stability analysis and numerical simulations.The time evolution of the interface between air and polymer film on the unbounded spatial domain was described by the thin film equation,incorporating the electric driving force and the surface diffusion.The nonlinear interfacial growth includes the amplitude equations and superpo sition of one-dimensional structures at regular orientations.The pattern selection is driven by the subcritical instability mechanism in which the relative thickness of the polymer film plays a critical role.
  • loading
  • [1]
    Chou S Y, Zhuang L. Lithographically induced self-assembly of periodic polymer micropillar arrays[J]. J Vac Sci Technol B, 1999, 17(6): 3197-3202.
    [2]
    Schffer E, Thurn-Albrecht T, Russell T P, Stelner U. Electrically induced structure formation and pattern transfer[J]. Nature, 2000, 403: 874-877. doi: 10.1038/35002540
    [3]
    Wu N, Russel W B. Electric-field-induced patterns in thin polymer films: weakly nonlinear and fully nonlinear evolution[J]. Langmuir, 2005, 21(26):12290-12302. doi: 10.1021/la052099z
    [4]
    Kim D, Lu W. Interface instability and nanostructure patterning[J]. Computational Materials Science, 2006, 38(2): 418-425. doi: 10.1016/j.commatsci.2006.03.015
    [5]
    Lin Z Q, Kerle T, Baker S M, Hoagland D A. Electric field induced instabilities at liquid/liquid interfaces[J]. Journal of Chemical Physics, 2001, 114(5): 2377-2381. doi: 10.1063/1.1338125
    [6]
    Pease L F III, Russel W B. Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: a generalized linear stability analysis[J]. Journal of Chemical Physics, 2003, 118(8): 3790-3803. doi: 10.1063/1.1529686
    [7]
    Pease L F III, Russel W B. Limitations on length scales for electrostatically induced submicrometer pillars and holes[J]. Langmuir, 2004, 20(3): 795-804. doi: 10.1021/la035022o
    [8]
    Schffer E, Thurn-Albrecht T, Russell T P, Stelner U. Electrohydrodynamic instabilities in polymer films[J]. Europhysics Letters, 2001, 53(4), 518-524.
    [9]
    Tian E M. Pattern formation induced by an electric field in thin liquid films[J]. Journal of Mathematics, Statistics, and Allied Fields, 2007, 1(1):1-6.
    [10]
    Wu N, Russel W B. Micro- and nano-patterns created via electrohydrodynamic instabilities[J]. Nano Today, 2009, 4(2): 180-192. doi: 10.1016/j.nantod.2009.02.002
    [11]
    Yeoh H K, Xu Q, Basaran O A. Equilibrium shapes and stability of a liquid film subjected to a nonuniform electric field[J]. Physics of Fluids, 2007, 19(11):114111. doi: 10.1063/1.2798806
    [12]
    Pease L F III, Russel W B. Linear stability analysis of thin leaky dielectric films subjected to electric fields[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 102(2): 233-250. doi: 10.1016/S0377-0257(01)00180-X
    [13]
    Shanker V, Sharma A. Instability of the interface between thin fluid films subjected to electric fields[J]. Journal of Colloid and Interface Science, 2004, 274(1): 294-308. doi: 10.1016/j.jcis.2003.12.024
    [14]
    Verma R, Sharma A, Kargupta K, Bhaumik J. Electric field induced instability and pattern formation in thin liquid films[J]. Langmuir, 2005, 21(8): 3710-3721. doi: 10.1021/la0472100
    [15]
    Scanlon J W, Segel L A. Finite amplitude cellular convection induced by surface tension[J]. J Fluid Mech, 1967, 30(1): 149-162. doi: 10.1017/S002211206700134X
    [16]
    Segel L A, Stuart J T. On the question of the preferred mode in cellular thermal convection[J]. J Fluid Mech, 1962, 13(2): 289-306. doi: 10.1017/S0022112062000683
    [17]
    Segel L A. The nonlinear interaction of a finite number of disturbances to a layer of fluid heated from below[J]. J Fluid Mech, 1965, 21(2): 359-384. doi: 10.1017/S002211206500023X
    [18]
    Busse F H. The stability of finite amplitude cellular convection and its relation to an extremum principle[J]. J Fluid Mech, 1967, 30(4): 625-649. doi: 10.1017/S0022112067001661
    [19]
    Palm E. Nonlinear thermal convection[J]. Ann Rev Fluid Mech, 1975, 7: 39-61. doi: 10.1146/annurev.fl.07.010175.000351
    [20]
    Tian E M, Wollkind D J. Nonlinear stability analyses of pattern formation in thin liquid films[J]. Interfaces and Free Boundaries, 2003, 5: 1-25.
    [21]
    Wollkind D J, Sriranganathan R, Oulton D B. Interfacial patterns during plane front alloy solidification[J]. Physica D, 1984, 12(1/3):215-240. doi: 10.1016/0167-2789(84)90526-8
    [22]
    Wollkind D J, Stephenson L E. Chemical turing pattern formation analyses: comparison of theory with experiment[J]. SIAM J Appl Math, 2000, 61(2): 387-431. doi: 10.1137/S0036139997326211
    [23]
    Chang H C. Wave evolution on a falling film[J]. Annu Rev Fluid Mech, 1994, 26: 103-36. doi: 10.1146/annurev.fl.26.010194.000535
    [24]
    Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films[J]. Reviews of Modern Physics, 1997, 69(3): 931-980. doi: 10.1103/RevModPhys.69.931
    [25]
    Landau L D, Lifshitz E M. Electrodynamics of Continuous Media[M]. New York: Pergamon Press, 1960.
    [26]
    Saville D A. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model[J]. Annu Rev Fluid Mech, 1997, 29: 27-64. doi: 10.1146/annurev.fluid.29.1.27
    [27]
    Zaks M A, Auer M, Busse F H. Undulating rolls and their instabilities in a Rayleigh-Benard layer[J]. Physical Review E, 1996, 53(5): 4807-4819. doi: 10.1103/PhysRevE.53.4807
    [28]
    Davis S H. Thermocapillary instabilities[J]. Ann Rev Fluid Mech, 1987, 19: 403-435. doi: 10.1146/annurev.fl.19.010187.002155
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1640) PDF downloads(808) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return