ZHAI Xiao-yang, FU Jing-li. Study on Symmetries and Conserved Quantities of Vehicle Body Vibration Systems[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1285-1293. doi: 10.3879/j.issn.1000-0887.2015.12.007
 Citation: ZHAI Xiao-yang, FU Jing-li. Study on Symmetries and Conserved Quantities of Vehicle Body Vibration Systems[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1285-1293.

# Study on Symmetries and Conserved Quantities of Vehicle Body Vibration Systems

##### doi: 10.3879/j.issn.1000-0887.2015.12.007
Funds:  The National Natural Science Foundation of China（11272287;11472247）
• Rev Recd Date: 2015-08-22
• Publish Date: 2015-12-15
• Symmetries and conserved quantities of vehicle body vibration systems were studied with the Lie group method. The vertical translational vibration and the pitching vibration around the mass center were addressed by means of the Lagrangian functions to construct the vehicle body vibration model. According to this vibration system, the Noether symmetry theory and the Lie symmetry theory were derived via the introduction of the Lie group method. The existence of the Noether symmetries and the Lie symmetries of the system were proved with the corresponding conserved quantities obtained. This work provides a new symmetry solution to the vehicle body vibration problem, and meanwhile expands the application scope of the Lie group method.
•  [1] 梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Feng-xiang. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999.(in Chinese)) [2] 薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的Gauss最小拘束原理[J]. 应用数学和力学,2015,36(7): 700-709.(XUE Yun, QU Jia-le, CHEN Li-qun. Gauss principle of least constraint for Cosserat growing elastic rod dynamics[J]. Applied Mathematics and Mechanics,2015,36(7): 700-709.(in Chinese)) [3] 顾书龙, 张宏彬. Kepler方程的Noether对称性与Hojman守恒量[J]. 物理学报, 2010,59(2): 716-718.(GU Shu-long, ZHANG Hong-bin. Noether symmetry and the Hojman conserved quantity of Kepler equation[J].Acta Physica Sinica,2010,59(2): 716-718.(in Chinese)) [4] 张毅. Lagrange系统的共形不变性与Noether对称性和Lie对称性[J]. 苏州科技学院学报（自然科学版）, 2009,26(1): 1-5.(ZHANG Yi. Conformal invariance, Noether symmetry and Lie symmetry of Lagrangian systems[J].Journal of Suzhou University of Science and Technology(Natural Science),2009,26(1): 1-5.(in Chinese)) [5] 葛伟宽, 张毅, 薛纭. Rosenberg问题的对称性与守恒量[J]. 物理学报, 2010,59(7): 4434-4436.(GE Wei-kuan, ZHANG Yi, XUE Yun. Symmetries and conserved quantities of the Rosenberg problem[J].Acta Physica Sinica,2010,59(7): 4434-4436.(in Chinese)) [6] FU Jing-li, CHEN Li-qun. On Noether sysmmetries and form invariance of mechanico-electrical systems[J]. Physics Letters A,2004,331（3/4）: 138-152. [7] FANG Jian-hui. A new type of conserved quantity of Lie symmetry for the Lagrange system[J].Chinese Physics B,2010,19(4): 21-24. [8] 楼智美. 两自由度弱非线性耦合系统的一阶近似Lie 对称性与近似守恒量[J]. 物理学报, 2013,62(27): 220202.(LOU Zhi-mei. The first order approximate Lie symmetries and approximate conserved quantities of the weak nonlinear coupled two-dimensional system[J].Acta Physica Sinica,2013,62(27): 220202.(in Chinese)) [9] 刘畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman 守恒量[J]. 物理学报, 2008,57(11): 6709-6713.(LIU Chang, LIU Shi-xing, MEI Feng-xiang, GUO Yong-xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems[J].Acta Physica Sinica,2008,57(11): 6709-6713.(in Chinese)) [10] 梅凤翔. 具有可积微分约束的系统的Lie对称性[J]. 力学学报, 2000,32(4): 466-472.(MEI Feng-xiang. Lie symmetries of mechanical system with integral differential constraints[J].Acta Mechanica Sinica,2000,32(4): 466-472.(in Chinese)) [11] 黄卫立, 蔡建乐. 变质量Chetaev型非完整系统的共形不变性[J]. 应用数学和力学, 2012,33(11): 1294-1303.(HUANG Wei-li, CAI Jian-le. Conformal invariance for the nonholonomic system of Chetaev’s type with variable mass[J]. Applied Mathematics and Mechanics,2012,33(11): 1294-1303.(in Chinese)) [12] 邹丽, 王振, 宗智, 王喜军, 张朔. 指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析[J]. 应用数学和力学, 2014,35(7): 777-789.(ZOU Li, WANG Zhen, ZONG Zhi, WANG Xi-jun, ZHANG Shuo. Analytical and numerical investigation of the variable coefficient Burgers equation under Cauchy condition with the exponential homotopy method[J].Applied Mathematics and Mechanics,2014,35(7): 777-789.(in Chinese)) [13] 梅凤翔. Lagrange系统的形式不变性[J]. 北京理工大学学报, 2000,9(2): 120-124.(MEI Feng-xiang. Form invariance of Lagrange system[J].Journal of Beijing Institute of Technology,2000,9(2): 120-124.(in Chinese)) [14] ZHANG Yi. Symmetries and conserved quantities of generalized Birkhoffian systems[J].Journal of Southeast University(English Edition),2010,26(1): 146-150. [15] 方建会, 丁宁, 王鹏. Hamilton系统Mei对称性的一种新守恒量[J]. 物理学报, 2007,56(6): 3039-3042.(FANG Jian-hui, DING Ning, WANG Peng. A new type of conserved quantity of Mei symmetry for Hamilton system[J].Acta Physica Sinica,2007,56(6): 3039-3042.(in Chinese)) [16] 郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量[J]. 物理学报, 2010,59(8): 5209-5212.(ZHENG Shi-wang, XIE Jia-fang, CHEN Xiang-wei, DU Xue-lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems[J].Acta Physica Sinica,2010,59(8): 5209-5212.(in Chinese)) [17] 张策. 机械动力学[M]. 第二版. 北京: 高等教育出版社, 2008: 142-143.(ZHANG Ce. Machinery Dynamics [M]. 2nd ed. Beijing: Higher Education Press, 2008: 142-143.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142