TIAN Li-xin, XU Bo-qiang, LIU Zeng-rong. Wavelet Approximate Inertial Manifold and Numerical Solution of Burgers' Equation[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1013-1024.
Citation: TIAN Li-xin, XU Bo-qiang, LIU Zeng-rong. Wavelet Approximate Inertial Manifold and Numerical Solution of Burgers' Equation[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1013-1024.

Wavelet Approximate Inertial Manifold and Numerical Solution of Burgers' Equation

  • Received Date: 2001-10-09
  • Rev Recd Date: 2002-05-09
  • Publish Date: 2002-10-15
  • The existence of approximate inertial manifold using wavelet to Burgers. equation,and numerical solution under multiresolution analysis with the low modes were studied. It is shown that the Burgers. equation has a good localization property of the numerical solution distinguishably.
  • loading
  • [1]
    Temam R. Infinite Dimensional Dynamical System in Mechanics and Physics[M]. Belin:Springer-Verlag,1988.
    [2]
    TIAN Li-xin. Wavelet approximate inertial manifold in nonlinear solitary wave equation[J]. J Math Phy,2000,41(8):5771-5792.
    [3]
    Gomes Soina M,Cortina Elsa. Convergence estimate for the wavelet Galerkin method[J]. SIAM J Num Anal,1996,33(1):149-161.
    [4]
    Perrier V,Basdevant C. Periodical wavelet analysis[J]. Rech Aerosp,1989,3(1):54-67.
    [5]
    Bacry E,Mallat S,Colau G Papaue. A wavelet based space-time adaptive numerical method for partial differential equations[J]. Math Mod Numer Anal,1992,26(4):793-834.
    [6]
    许伯强,田立新. 周期小波基下Burgers方程的数值解[J]. 江苏理工大学学报,2001,22(3):1-6.
    [7]
    田立新,储志俊,刘曾荣,等. 低模态下弱阻尼KdV方程约化形式的数值分析[J]. 应用数学和力学,2000,21(10):1013-1020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2009) PDF downloads(537) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return