FANG Jian-hui, ZHAO Song-qing, JIAO Zhi-yong. The Lie Symmetries and Conserved Quantities of Variable-Mass Nonholonomic System of Non-Chetaev's Type in Phase Space[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1080-1084.
 Citation: FANG Jian-hui, ZHAO Song-qing, JIAO Zhi-yong. The Lie Symmetries and Conserved Quantities of Variable-Mass Nonholonomic System of Non-Chetaev's Type in Phase Space[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1080-1084.

# The Lie Symmetries and Conserved Quantities of Variable-Mass Nonholonomic System of Non-Chetaev's Type in Phase Space

• Rev Recd Date: 2002-05-14
• Publish Date: 2002-10-15
• The Lie symmetries and the conserved quantities of a variable mass nonholonomic system of non-Chetaev's type are studied by introducing the infinitesimal transformations of groups in phase space. By using the invariance of the differential equations of motion under the infinitesmal transformations of groups,the determining equations and the restriction equations of the Lie symmetries of the system are established,and the structure equations and the conserved quantities are obtained. An example is given to illustrate the application of the result.
•  [1] Lutzky M.Dynamical symmetries and conserved quantities[J].J Phys A:Mach Gen,1979,12(7):973-981. [2] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989. [3] 赵跃宇,梅凤翔.关于力学系统的对称性与不变量[J].力学进展,1993,23(3):360-372. [4] 赵跃宇.非保守力学系统的Lie对称性和守恒量[J]. 力学学报,1994,26(3):380-384. [5] WU Run-heng,MEI Feng-xiang.On the Lie symmetries of the nonholonomic mechanical systems[J].Journal of Beijing Institute Technology,1997,6(3):229-235. [6] 梅凤翔,吴润衡,张永发. 非Четаев型非完整系统Lie对称性与守恒量[J].力学学报,1998,30(4):468-474. [7] 梅凤翔. 变质量完整力学系统的Lie对称性和守恒量[J].应用数学和力学,1999,20(6):592-596. [8] 刘荣万,傅景礼.非完整非保守力学系统在相空间的Lie对称性与守恒量[J].应用数学和力学,1999,20(6):597-601. [9] 梅凤翔,刘瑞,罗勇.高等分析力学[M].北京:北京理工大学出版社,1991.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142