LIU Jun. Research of the Periodic Motion and Stability of Two-Degree-of-Freedom Nonlinear Oscillating Systems[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1093-1100.
 Citation: LIU Jun. Research of the Periodic Motion and Stability of Two-Degree-of-Freedom Nonlinear Oscillating Systems[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1093-1100.

# Research of the Periodic Motion and Stability of Two-Degree-of-Freedom Nonlinear Oscillating Systems

• Rev Recd Date: 2002-04-01
• Publish Date: 2002-10-15
• The periodic motion and stability for a class of two-degree-of-freedom nonlinear oscilating systems are studied by using the method of Liapunov function. The sufficient conditions which guarantee the existence,uniqueness and asymptotic stability of the periodic solutions are obtained.
•  [1] Nayfey A H,Mook D T. Nonlinear Oscillations[M]. New York:A Wiley Interscience Publication,1979,92-98. [2] 陈予恕. 非线性振动系统的分岔理论和混沌理论[M]. 北京:高等教育出版社,1993,180-198. [3] 丁皓江,陈伟球,刘钟. 球壳和柱壳振动中的一类方程组的求解[J]. 应用数学和力学,1995,16(1):1-13. [4] 凌复华. 非线性振动系统周期解的数值分析[J]. 应用数学和力学,1983,4(4):489-505. [5] 凌复华. 非线性振动系统周期运动及其稳定性的数值研究[J]. 力学进展,1986,16(1):14-27. [6] Rosenberg R M,Atkinson C P. On the natural modes and their stability in nonlinear two-degree-of-freedom system[J]. J Appl Mech,1959,26(3):377-385. [7] Hara T. On the uniform ultimate boundedness of the solutions of certain third order differential equations[J]. J Math Anal Appl,1981,80(5):533-544. [8] WANG Lian,WANG Mu-qiu. On periodic solution of higher order nonlinear periodical system[J]. Ann Differential Equations,1987,3(1):15-26. [9] Lasall J,Lefschtz S. Stability by Liapunov's Direct Method With Application[M]. New York:Academic Press,1961,121-123.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142