LI Da-ming, ZHANG Hong-ping, GAO Yong-xiang. Series Perturbations Approximate Solutions to N-S Equations and Modification to Asymptotic Expansion Matched Method[J]. Applied Mathematics and Mechanics, 2002, 23(8): 855-863.
Citation: LI Da-ming, ZHANG Hong-ping, GAO Yong-xiang. Series Perturbations Approximate Solutions to N-S Equations and Modification to Asymptotic Expansion Matched Method[J]. Applied Mathematics and Mechanics, 2002, 23(8): 855-863.

Series Perturbations Approximate Solutions to N-S Equations and Modification to Asymptotic Expansion Matched Method

  • Received Date: 2001-04-10
  • Rev Recd Date: 2002-04-01
  • Publish Date: 2002-08-15
  • A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted.Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted.By the ameliorative asymptotic expansion matched method,the matched functions are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
  • loading
  • [1]
    钱伟长. 奇异摄动理论及其在力学中的应用[M].北京:科学出版社,1981,111-119.
    [2]
    谢定裕. 渐近方法——在流体力学中的应用[M]. 北京:友谊出版公司,1983,26-43.
    [3]
    Nayfeh A H. Perturbation Methods[M]. New York: Wiley, 1973,23-31.
    [4]
    Van Dyke M. Perturbation Methods in Fluid Mechanics[M]. New York: Academic Press Inc, 1964, 9-20.
    [5]
    Kaplun S. Low Reynolds number flow past a circular cylinder[J]. J Math Mech,1957,6(3):595-603.
    [6]
    Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Trans Camb Phil Soc, 1851,9(2):8-106.
    [7]
    Oseen C W. Ueber die Stokes'sche formel, und uber eine verwandte aufgabe in der hydrodynamik[J]. Ark Math Astronom Fys,1910,6(29):154-160.
    [8]
    Chester W. On Oseen's approximation[J]. J Fluid Mech, 1962,13(3):557-569.
    [9]
    易家训. 流体力学[M]. 章克本,张涤明,陈启强,等译. 北京:高等教育出版社,1982,262-277.
    [10]
    Whitehead A N. Second approximations to viscous fluid motion[J]. Quart J Pure Appl Math,1889,23(1):143-152.
    [11]
    Goldstein S. The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers[J]. Proc Roy Soc Ser A, 1929,123(1):225-235.
    [12]
    Kaplun S, Lagerstrom P A. Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers[J]. J Math Mech,1957,6(3):585-593.
    [13]
    Proudman I, Pearson J R A. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder[J]. J Fluid Mech, 1957,2(2):237-262.
    [14]
    Chester W,Breach D R. On the flow past a sphere at low Reynolds numbers[J]. J Fluid Mech, 1969,37(4):751-760.
    [15]
    Taneda S. Studies on wake vortices (Ⅲ): Experimental investigation of the wake behind a sphere at low Reynolds numbers[J]. Rep Res Inst Appl Mech Kyushu Univ, 1956,4(1):99-105.
    [16]
    Maxworthy T. Accurate measurements of sphere drag at low Reynolds numbers[J]. J Fluid Mech,1965,23(2):369-372.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2645) PDF downloads(524) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return