WANG Deng-gang, LIU Ying-xi, LI Shou-ju. Chaos-Regularization Hybrid Algorithm for Nonlinear Two-Dimensional Inverse Heat Conduction Problem[J]. Applied Mathematics and Mechanics, 2002, 23(8): 864-870.
 Citation: WANG Deng-gang, LIU Ying-xi, LI Shou-ju. Chaos-Regularization Hybrid Algorithm for Nonlinear Two-Dimensional Inverse Heat Conduction Problem[J]. Applied Mathematics and Mechanics, 2002, 23(8): 864-870.

# Chaos-Regularization Hybrid Algorithm for Nonlinear Two-Dimensional Inverse Heat Conduction Problem

• Rev Recd Date: 2002-03-26
• Publish Date: 2002-08-15
• A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature.Combining the chaos optimization algorithm with the gradient regularization method,a chaos-regularization hybrid algorithm was proposed to solve the established numerical model.The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regularization method to escape from local optima in the hybrid algorithm.Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule,the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements.Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values,and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.
•  [1] Stolz G J. Numerical solution to an inverse problem of heat conduction for simple shapes[J]. Journal of Heat Transfer, 1960,82C(1):20-26. [2] 俞昌铭.计算热物性参数的导热反问题[J].工程热物理学报,1982,3(4):372-378. [3] Kohn R, Vogelins M.Determining conductivity by boundary measurements[J]. Communications on Pure and Applied Mathematics,1984,37(3):289-298. [4] Tervola P.A method to determine the thermal conductivity from measuered temperature profiles[J]. International Journal of Heat and Mass Transfer,1989,32(8):1425-1430. [5] Lin J Y,Cheng T F.Numerical estimation of thermal conductivity from boundary temperature measurements[J].Numerical Heat Transfer,1997,32A(2):187-203. [6] Garcia S, Guynn J, Scott E P. Use of genetic algorithms in thermal property estimation Part Ⅱ:simultaneous estimation of thermal properties[J]. Numerical Heat Transfer,1998,33A(2):149-168. [7] 白博峰,郭烈锦,陈学俊.最小二乘原理求解多维瞬态导热反问题[J].计算物理,1997,14(4-5):696-698. [8] 王登刚,刘迎曦,李守巨.非线性二维稳态导热反问题的一种数值解法[J].西安交通大学学报,2000,34(11):49-52. [9] 黄光远,刘小军.数学物理反问题[M].济南:山东科学技术出版社,1993,57-61. [10] Tikhonov A N, Arsenin V Y. Solutions of Ill-Posed Problems[M].Fritz John Transl.Washington: Winston Press,1977.(English version) [11] 唐立民,张文飞,刘迎曦.微分方程反问题的梯度正则化方法[J].计算结构力学及其应用,1991,8(2):123-129. [12] 刘迎曦,王登刚,张家良,等.材料物性参数识别的梯度正则化方法[J]. 计算力学学报,2000,17(1):69-75. [13] 王登刚,刘迎曦,李守巨.二维稳态导热反问题的正则化解法[J].吉林大学自然科学学报,2000,(2):56-60. [14] 王东生,曹磊.混沌、分形及其应用[M].合肥:中国科技大学出版社,1995,25-92. [15] 李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. [16] 孔祥谦.有限单元法在传热学中的应用(第二版)[M].北京:科学出版社,1986,148-150. [17] 杨文采.地球物理反演和地震层析成象[M].北京:地质出版社,1989,117-119.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142