DING Rui, DING Fang-yun, ZHANG Ying. Boundary Element Method for Buckling Eigenvalue Problem and Its Convergence Analysis[J]. Applied Mathematics and Mechanics, 2002, 23(2): 144-156.
Citation: DING Rui, DING Fang-yun, ZHANG Ying. Boundary Element Method for Buckling Eigenvalue Problem and Its Convergence Analysis[J]. Applied Mathematics and Mechanics, 2002, 23(2): 144-156.

Boundary Element Method for Buckling Eigenvalue Problem and Its Convergence Analysis

  • Received Date: 2000-09-29
  • Rev Recd Date: 2001-09-11
  • Publish Date: 2002-02-15
  • The conditions for determining solution of buckling eigenvalue problem are discussed. The corresponding system of integral equations with constraint conditions and boundary variational equations with Lagrange multiplier are established. The theorems on the existence and uniqueness of the solution for these problems are given. The corresponding boundary element method is constructed and the error estimation for the approximation solution is obtained. Finally the numerical example is give.
  • loading
  • [1]
    祝家麟.椭圆边值问题的边界元分析[M].北京:科学出版社,1987.
    [2]
    Brezzi F.On the existence,uniqueness and approximation of saddle point problem arising from Lagrange multiplier[J].RAIRO,1974,4(2):129-151.
    [3]
    温希重,李荣华.求解平面双调合方程的边界元方法的误差分析[J].计算数学,1990,12(3):270-278.
    [4]
    丁方允,吕涛涛.二维Helmholtz方程非线性边值问题的边界元分析[J].兰州大学学报,1994,30(2):25-30.
    [5]
    丁方允.三维Helmholtz方程Dirichlet问题的边界元方法及其收敛性分析[J].兰州大学学报,1995,31(3):30-38.
    [6]
    丁睿,朱正佑,程昌钧.粘弹性板动力响应的边界元方法(Ⅱ)——理论分析[J].应用数学和力学,1998,19(2):95-103.
    [7]
    丁睿,张颖,丁方允.屈曲特征值问题的边界元分析[A].见:程昌钧,戴世强,刘宇陆主编.现代数学和力学(Ⅶ)[C]. 上海:上海大学出版社,1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2242) PDF downloads(728) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return