Citation: | LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216. |
[1] |
Lazer A C,Sanches D A.On periodically perturbed conservative systems[J].Mich Math Ⅰ,1969,16(2):193-200.
|
[2] |
Amaral L,Pera M P.On periodic solutions of nonconservative systems[J].Nonlinear Analysis,1982,6(7):733-743.
|
[3] |
Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1):193-201.
|
[4] |
Meyer G H.On solving nonlinear equations with a one-parameter operator imbedding[J].SIAM J Numer Anal,1968,5(4):739-752.
|
[5] |
Lazer A C.Application of Lemma on bilinear forms to a problem in nonlinear Oscillations[J].Proc Amer Math Soc,1972,33(1):89-94.
|
[6] |
Dunford V,Schwartz J T.Linear Operator[M].Vol Ⅱ,New York:Interscience,1963,1289.
|
[7] |
Hadamard J.Sur les transformation ponctuelles[J].Bull Cos Math Fr,1906,34(1):71-84.
|
[8] |
Li W,Shen Z.A construction proof of the periodic solution of Duffing equation[J].Chinese Science Bulletin,1997,22(42):1591-1594.
|
[9] |
Plastick R.Homeomorphism between Banach space[J].Trans Amer Math Soc,1974,200(1):169-183.
|
[10] |
Raduiescu M,Raduiescu S.Global inversion theorems and applications to differential equations[J].Nonlinear Analysis,1980,4(4):951-965.
|
[11] |
Shen Z.On the periodic solution to the Newtonian equation of motion[J].Nonlinear Analysis,1989,13(2):145-149.
|