LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216.
Citation: LIU Guo-qing, FU Dong-sheng, SHEN Zu-he. On Numerical Solutios of Periodically Perturbed Conservative Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 207-216.

On Numerical Solutios of Periodically Perturbed Conservative Systems

  • Received Date: 2000-09-29
  • Rev Recd Date: 2001-06-26
  • Publish Date: 2002-02-15
  • A nonlinear perturbed conservative system is discussed. By means of Hadamard. stheorem, the existence and uniqueness of the solution of the continuous problem are proved. When the equation is discreted on the uniform meshes, it is proved that the corresponding discrete problem has a unique solution. Finally, the accuracy of the numerical solution is considered and a simple algorithm is provided for solving the nonlinear difference equation.
  • loading
  • [1]
    Lazer A C,Sanches D A.On periodically perturbed conservative systems[J].Mich Math Ⅰ,1969,16(2):193-200.
    [2]
    Amaral L,Pera M P.On periodic solutions of nonconservative systems[J].Nonlinear Analysis,1982,6(7):733-743.
    [3]
    Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1):193-201.
    [4]
    Meyer G H.On solving nonlinear equations with a one-parameter operator imbedding[J].SIAM J Numer Anal,1968,5(4):739-752.
    [5]
    Lazer A C.Application of Lemma on bilinear forms to a problem in nonlinear Oscillations[J].Proc Amer Math Soc,1972,33(1):89-94.
    [6]
    Dunford V,Schwartz J T.Linear Operator[M].Vol Ⅱ,New York:Interscience,1963,1289.
    [7]
    Hadamard J.Sur les transformation ponctuelles[J].Bull Cos Math Fr,1906,34(1):71-84.
    [8]
    Li W,Shen Z.A construction proof of the periodic solution of Duffing equation[J].Chinese Science Bulletin,1997,22(42):1591-1594.
    [9]
    Plastick R.Homeomorphism between Banach space[J].Trans Amer Math Soc,1974,200(1):169-183.
    [10]
    Raduiescu M,Raduiescu S.Global inversion theorems and applications to differential equations[J].Nonlinear Analysis,1980,4(4):951-965.
    [11]
    Shen Z.On the periodic solution to the Newtonian equation of motion[J].Nonlinear Analysis,1989,13(2):145-149.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2400) PDF downloads(732) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return