HUANG Hao, WEN Gong-bi. A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall[J]. Applied Mathematics and Mechanics, 2001, (10): 1043-1057.
Citation: HUANG Hao, WEN Gong-bi. A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall[J]. Applied Mathematics and Mechanics, 2001, (10): 1043-1057.

A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall

  • Received Date: 2000-08-03
  • Rev Recd Date: 2001-05-08
  • Publish Date: 2001-10-15
  • A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed .After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall,the macromolecular transport happens surrounding the leaky cells.The arterial wall was divided into four layers:the endothelial layer,the subendothelial intima,the internal elastic lamina and the media for the convenience of research.The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed.The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained;and concentration distribution of three macromolecules;LDL,HRP and Albumin,were calculated with numerical simulation method.The new theory predicts,the maximum and distribution areas of time-dependent concentration with roundshape endothelial cell are both larger than that with ellipse-shape endothelial cell.The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier-time growth to the state when macromolecular transfer approaches steadily.These predictions of the new model are in agreement with the experimental abservation for the growth and concentration distribution of LDL and Albumin.
  • loading
  • [1]
    温功碧.动脉粥样硬化成因和大分子跨血管的传质[J].力学进展,1993,23(2):223-233.
    [2]
    Caro C G,Fitz-Gerald J M,Schroter R C.Arterial wall sheer and distribution of early atheroma in man[J].Nature(Lond),1969,223(5211):1159-1161.
    [3]
    Fry D L,Cornhill J F,Sharma H,et al.Uptake of low density lipoprotein,albumin and water by deendothelialized in vitro minipig aorta[J].Arteriosclerosis,1989,6:475-490.
    [4]
    Stemerman M B,Morrel Em,Durke K R,et al.Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta[J].Arteriosclerosis,1986,6(1):64-69.
    [5]
    Chien S,Lin S,Weinbaum S,et al.The role of arterial endothelial cell mitosis in macromolecular permeability[J].Advances in Experimental Medicine &Biology,1988,242:59-73.
    [6]
    Lin S,Jan K M,Schuessler G,et al.Enhanced macromolecular permeability of aortic endothelial cells in association with mitosis[J].Atherosclerosis,1988,73(2,3):223-232.
    [7]
    Chuang P,Cheng J,Lin S,et al.Macromolecular transport across arterial and venous endothelium in rats:studies with evans blue-albumin and horseradish peroxidase[J].Arteriosclerosis,1990,10(2):188-197.
    [8]
    Weinbaum S,Tzeghai G,Ganatos P,et al.Effect of cell turnover and leaky junctions on arterial macromolecular transport[J].Am J Physiol,1985,248(6):H945-H960.
    [9]
    温功碧,Weinbaum S,Ganatos P,et al.大分子跨血管壁的非定常扩散--模型和观察[J].力学学报,1989,21(3):290-299.
    [10]
    Weinbaum S,Ganatos P,Pfeffer R,et al.On the time-dependent diffusion of macromolecules through transient open junctions and their subendothelial spread 1 short-time model for cleft exit region[J].J Theor Biol,1988,135(1):1-30.
    [11]
    Fry D L,Cornhill J F,Sharma H,et al.Uptake for low density lipoprotein,albumin,and water by deendothelialized in vitro minipig aorta[J].Arteriosclerosis,1986,6(5):475-490.
    [12]
    Campbell G J,Roach M R.Fenestrations in the internal elastic lamina at bifurcations of human cerebral arteries[J].Stroke,1981,12(4):1,489-496.
    [13]
    Song S H,Roach M R.Quantitative changes in the size of fenestrations of elastic laminae of sheep thoracic aorta studied with SEM1[J].Blood Vessels,1983,20(3):145-153.
    [14]
    Yuan F,Chien S,Weinbaum S.A new view of convective-diffusive transport processes in the arterial intima[J].J Biomech Eng,1991,113(3):314-329.
    [15]
    温功碧,姚大康.关于水和大分子跨血管壁传质问题的一个统一的数学模型[J].中国生物医学工程学报,1994,13(1):54-66.
    [16]
    Huang Y,Rumschitzki D,Chien S,et al.A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima[J].J Biomech Eng,1994,116(4):430-445.
    [17]
    Truskey G A,Roberts W L,Herrmann R A,et al.Measurement of endothelial permeability to125 I-low density lipoproteins in rabbit arteries by use of en face preparations[J].Circulation Research,1992,71(4):883-897.
    [18]
    Lark M W,Yeo T,Mar T,et al.Arterial chondroitin sulfate proteoglycan;localization with a monoclonal antibody[J].The J Histochemistry and Cytochemistry,1988,36(10):1211-1221.
    [19]
    Wen G B,Feng J J.A three dimensional convective-diffusive model for the transportation of macromolecules and water across the arterial wall[J].Chinese J Mechanics Press,1995,11(3):267-274.
    [20]
    忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].长沙:国防科技大学出版社,1989,220-251.
    [21]
    徐萃薇.计算方法引论[M].北京:高等教育出版社,1985,239-283.
    [22]
    Anderson D A,Tannehill J C,Pletcher R H.Computational Fluid Mechanical and Heat Transfer[M].New York:Press Roman,1984,247-255.
    [23]
    Tzeghai G,Ganatos P,Pfeffer R,et al.A theoretical model to study the effect of convection and leaky junctions on macromolecule transport in artery walls[J].J Theor Biol,1986,121(2):141-162.
    [24]
    Wen G B,Weinbaum S,Ganatos P,et al.On the time-dependent diffusion of macromolecules through transient open junctions and their subendothelial spread,2 long-time model for interaction between leakage sites[J].J Theor Biol,1988,135(2):219-253.
    [25]
    Vargas C B,Vargas F F,Pribyl J G,et al.Hydraulic conductivity of the endothelial and outer layers of the rabbit aotra[J].Am J Physiol,1979,236(1):H53-H60.
    [26]
    Nerem R M,Levesque M J,Cornhill J F,et al.Vascular endothelial morphology as an indicator of blood flow[J].Biomech Eng,1981,103(3):172-176.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2468) PDF downloads(603) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return