Citation: | CHEN Yu-shu, YANG Cai-xia, WU Zhi-qiang, CHEN Fang-qi. 1:2 Internal Resonance of Coupled Dynamic System With Quadratic and Cubic Nonlinearities[J]. Applied Mathematics and Mechanics, 2001, 22(8): 817-824. |
[1] |
Nayfeb A H,Mook D T.Nonlinear Oscillations[M].New York:John Wiley & Sons,1979.
|
[2] |
Langford W F,Zhan K,Dynamics of 1/1 resonance in vortex-induced vibration[A].In:M P Paidoussis Ed.ASME Fundmental Aspects of Fluid Structure Interactions[C].PVP-Vol.247,Book,No G00728-1992.
|
[3] |
Leblanc V G,Langford W F.Classification and unfoldings of 1:2 resonant Hopf bifurcation[J].Arch Rational Mech Anal,1996,(136):305-357.
|
[4] |
吴志强.多自由度非线性系统的非线性模态及Normal Form直接方法[D].博士论文,天津:天津大学,1996.
|
[5] |
陈芳启,吴志强,陈予恕.一类粘弹性圆柱壳的高余维分岔[J].力学学报,2001,33(3):286-293.
|
[6] |
陈予恕,杨彩霞.一类刚柔耦合非线性系统的动力学建模[J].中国空间科学技术,2000(3):712.
|
[7] |
CHEN Yu-shu,Leung A Y T.Bifurcation and Chaos in Engineering[M].London:Springer-Verlag,1998.
|
[8] |
陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995.
|
[9] |
陈予恕.非线性振动系统的分岔和混沌理论[M].北京:高等教育出版社,1993.
|
[10] |
陆启韶.常微分方程定性理论与几何方法[M].北京:北京航空航天大学出版社,1988.
|
[11] |
Arnold V I.Geometrical Methods in the Theory of Or dinary Differential Equations[M].2nd ed.New York:Springer-Verlag,1988.
|
[12] |
Golubitsky M,Schaeffer D G.Singularities and Bifurcation Theory,Vol.1[M].New York:Springer-Verlag,1985.
|
[13] |
Chow S N,Hale S.Methods of Bifur cation Theory[M].New York:Springer-Verlag,1992.
|