XU Jian, LU Qi-shao, HUANG Ke-lei. Singular Characteristics of Nonlinear Normal Modes in a Two Degrees of Freedom Asymmetric System With Cubic Nonlinearities[J]. Applied Mathematics and Mechanics, 2001, 22(8): 869-878.
 Citation: XU Jian, LU Qi-shao, HUANG Ke-lei. Singular Characteristics of Nonlinear Normal Modes in a Two Degrees of Freedom Asymmetric System With Cubic Nonlinearities[J]. Applied Mathematics and Mechanics, 2001, 22(8): 869-878.

# Singular Characteristics of Nonlinear Normal Modes in a Two Degrees of Freedom Asymmetric System With Cubic Nonlinearities

• Rev Recd Date: 2001-03-20
• Publish Date: 2001-08-15
• Nonlinear normal modes in a two degrees of freedom asymmetric system with cubic nonlinearities as singularity occurs in the system are studied,based on the invariant space in nonlinear normal modes and perturbation technique.Emphasis is placed on singular characteristics as the linear coupling between subsystems degenerates.For non-resonances,it is analytically presented that a single-mode motion and localization of vibrations occur in the system,and the degree of localization relates not only to the coupling stiffness between oscillators,but also to the asymmetric parameter.The parametric threshold value of localization is analytically given.For 11 resonance,there exist bifurcations of normal modes with nonlinearly coupling stiffness and asymmetric parameter varying.The bifurcating set on the parameter and bifurcating curves of normal modes are obtained.
•  [1] Guchenheimer J,Holmes P.Nonlinear Oscillation,Dynam ical System and Bifurcation of VectorFields[M].New York:Springer-Verlag,1983. [2] 陆启韶.分岔和奇异性[M].上海:上海科学技术出版社,1995. [3] Nayfeh A H,Mook D T.Nonlinear Oscillation s[M].New York:John Wiley & Sons Inc,1979. [4] Winggins S.In str oduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1990. [5] Chen Y S,Langford W F.The subharmonic bifurcation solution of nonlinear Mathieus equation and Euler dynamically buckling problem[J].Acta Mech Sinica,1998,19(3):522-532. [6] Iooss G,Joseph D D.Elementary Stability and Bifurcation Theory[M].New York:Springer-Ver-lag,1980. [7] Shaw S W,Pierre C.Normal modes for nonlinear vibration systems[J].Journal of Sound and Vibration,1993,164(1):85-124. [8] 徐鉴,陆启韶,黄克累.两自由度非对称三次系统非奇异时的非线性模态及叠加性[J].应用数学和力学,1998,19(12):1077-1086. [9] Anderson P W.Absence of diffusion in certain random lattices[J].Phsical Review,1958,109(12):1492-1505. [10] Hodges C H.Confinement of vibration by structural chains[J].Journal of Sound and Vibration,1982,82(2):411-424. [11] Pierre C,Dowell E H.Localization of vibration by structural irregularity[J].Journal of Sound and Vibration,1987,114(3):549-564. [12] Pierre C.Model localization and eigenvalue lociveering phenomena in disordered structures[J].Journal of Sound and Vibration,1988,126(3):485-502. [13] Pierre C.Weak and strong vibration localization in disordered structures:a statistical investigation[J].Journal of Sound and Vibration,1990,139(1):111-132. [14] 陈予恕.非线性振动[M].天津:天津科学技术出版社,1983. [15] Golubisky M,Stewart I,Schaeffer D G.Singularities and Groups in Bifurcation Theory[M].Voland Vol.New York:Springer-Verlag,1988. [16] Caughey T K,Vakakis A,Sivo J M.Analytical study of similar normal modes and their bifurcationsin class of strongly non-linear systems[J].Int J Non-Linear Mechanics,1990,25(5):521-533.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142