MA Run-nian, XU Jin, GAO Hang-shan. [0,ki]1m-Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.
 Citation: MA Run-nian, XU Jin, GAO Hang-shan. [0,ki]1m-Factorizations Orthogonal to a Subgraph[J]. Applied Mathematics and Mechanics, 2001, 22(5): 525-528.

# [0,ki]1m-Factorizations Orthogonal to a Subgraph

• Rev Recd Date: 2000-12-13
• Publish Date: 2001-05-15
• Let G be a graph,k1,…,km be positive integers.If the edges of graph G can be decom- posed into some edge disjoint [0,k1]-factor F1…,[0,km]-factor Fm then we can say F={F1,…,Fm},is a [0,ki]1m-factorization of G.If H is a subgraph with m edges in graph G and |E(H)∩E(Fi)|=1 for all 1≤i≤m,then we can call that F is orthogonal to H.It is proved that if G is a[0,k1+… +km-m+1]-graph,H is a subgraph with m edges in G,then graph G has a [0,ki]1m-factorization orthogonal to H.
•  [1] Bondy J A,Murty U S R.Graph Theory with Application[M].London:Macmillan,1976. [2] Akiyama J,Kano M.Factors and factorizations of graphs-a survey[J].Journal of Graph Theory,1985,9(1):1-42. [3] 刘桂真.与星正交的(g,f)-因子分解[J].中国科学(A辑),1995,25(4):367-373. [4] 马润年.与树正交的[0,ki] m1-因子分解[J].西安电子科技大学学报,1996,23(图论专辑):66-69. [5] MA Run-nian,BAI Guo-qiang.On orthogonal[0,ki]m1-factorizations of graphs[J].Acta Mathematica Scientia,1998,18(4):114-118. [6] 高安喜,马润年.图的正交因子分解[J].陕西师范大学学报(自然科学版),1999,22(2):20-22. [7] 马润年,高行山.关于图的(g,f)-因子分解[J].应用数学和力学,1997,18(4):381-386.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142