LIU Ji-ke, XU Wei-hua, CAI Cheng-wu. A Universal Matrix Perturbation Technique for Complex Modes[J]. Applied Mathematics and Mechanics, 2001, 22(3): 314-320.
Citation: LIU Ji-ke, XU Wei-hua, CAI Cheng-wu. A Universal Matrix Perturbation Technique for Complex Modes[J]. Applied Mathematics and Mechanics, 2001, 22(3): 314-320.

A Universal Matrix Perturbation Technique for Complex Modes

  • Received Date: 1999-06-04
  • Rev Recd Date: 2000-10-20
  • Publish Date: 2001-03-15
  • A universal matrix perturbation technique for complex modes is presented.This technique is applicable to all the three cases of complex eigenvalues:distinct,repeated and closely spaced eigenvalues.The lower order perturbation formulas are obtained by performing two complex eigensubspace condensations,and the higher order perturbation formulas are derived by successive approximation process.Three illustrative examples are given to verify the proposed method and satisfactory results are observed.
  • loading
  • [1]
    CHEN Jing-yu,LIU Ji-ke,ZHAO Ling-cheng.An improved perturbation method for free vibration analysis[J].Journal of Sound and Vibration,1995,180(3):519-523.
    [2]
    Courant R,Hilbert D.Methods of Mathematical Physics[M].Vol.1.New York:Interscience,1953,343-348.
    [3]
    Meirovitch L,Ryland G.Response of lightly damped gyroscopic systems[J].Journal of Sound and Vibration,1979,67(1):1-19.
    [4]
    Meirovitch L,Ryland G.A perturbation technique for gyroscopic systems with small internal and external damping[J].Journal of Sound and Vibration,1985,100(3):393-408.
    [5]
    刘济科,张宪民,孟光.对复模态矩阵摄动法的补充[J].航空动力学报,1996,11(1):97-99.
    [6]
    刘满,陈塑寰.复模态矩阵摄动法[J].吉林工业大学学报,1986,16(3):1-9.
    [7]
    徐伟华,刘济科.阻尼系统振动分析的复模态矩阵摄动法[J].中山大学学报(自然科学版),1998,37(4):50-54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2533) PDF downloads(786) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return