ZENG Wen-ping. A Class of Two-Level Explicit Difference Schemes for Solving Three Dimensional Heat Conduction Equation[J]. Applied Mathematics and Mechanics, 2000, 21(9): 966-972.
 Citation: ZENG Wen-ping. A Class of Two-Level Explicit Difference Schemes for Solving Three Dimensional Heat Conduction Equation[J]. Applied Mathematics and Mechanics, 2000, 21(9): 966-972.

# A Class of Two-Level Explicit Difference Schemes for Solving Three Dimensional Heat Conduction Equation

• Received Date: 1999-03-08
• Rev Recd Date: 2000-03-25
• Publish Date: 2000-09-15
• A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation.When the order of truncation error is Ot+(Δx)2),the stability condition is mesh ratio rt/(Δx)2t/(Δy)2t/(Δz)2≤1/2, which is better than that of a all the other explicit difference schemes.And when the order of truncation error is O((Δt)2+(Δx)4),the stability condition is r≤1/6,which contains the known results.
•  [1] 南京大学编. 偏微分方程数值解法[M]. 北京:科学出版社,1979. [2] Douglas J, Gum E. Two-high-order correct difference analogues for the equation of multi-dimensional heat flow[J]. Math Comput,1963,17(81):71-80. [3] 曾文平. 三维抛物型方程的一个新的高精度显式差分格式[J]. 工科数学,1992,8(4):20-25. [4] 曾文平. 解三维抛物型方程的高精度显式格式[J]. 华侨大学学报,1995,16(2):128-133. [5] Richtmyer R D, Morton K W. Difference Methods for Initial-Value Problems[M]. Second Edition. New York: New Jersey,1967.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

## Article Metrics

Article views (2374) PDF downloads(1050) Cited by()
###### Related

/

DownLoad:  Full-Size Img  PowerPoint