Liu Xianbin, Chen Dapeng, Chen Qiu. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)[J]. Applied Mathematics and Mechanics, 1999, 20(9): 902-912.
Citation: Liu Xianbin, Chen Dapeng, Chen Qiu. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)[J]. Applied Mathematics and Mechanics, 1999, 20(9): 902-912.

On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)

  • Received Date: 1998-05-29
  • Rev Recd Date: 1999-04-15
  • Publish Date: 1999-09-15
  • For a real noise parametrically excited co-dimension two bifurcation system on a three-dimensional central manifold,a model of enhanced generality is developed in the present paper by assuming the real noise to be an output of a linear filter system,namely,a zero-mean stationary Gaussian diffusion process that satisfies the detailed balance condition.On such basis,asymptotic expansions of invariant measure and maximal Lyapunov exponent for the relevant system are established by use of Arnold asymptotic analysis approach in parallel with the eigenvalue spectrum of Fokker-Planck operator.
  • loading
  • [1]
    Arnold L,Wihstutz V.Lyapunov Exponents[M].Lecture Notes in Mathematics,1186.Berlin:Springer-Verlag,1986.
    [2]
    Arnold L,Crauel H,Eckmann J P.Lyapunov Exponents[M],Lecture Notesin Mathe matics,1486.Berlin:Springer-Verlag,1991.
    [3]
    刘先斌.随机力学系统的分叉行为与变分方法研究[D].博士学位论文.成都:西南交通大学,1995.
    [4]
    刘先斌,陈虬,陈大鹏.非线性随机动力学系统的稳定性和分岔研究[J].力学进展,1996,26(4):437~53.
    [5]
    陈虬,刘先斌.随机稳定性和随机分岔研究进展[R].第七届现代数学和力学大会邀请报告.1997年11 月,上海.
    [6]
    Khasminskii R Z.Stochastic Stability of Differential Equations[M].Alphenaan den Rijin,the Netherlands:Sijthoff and Noord hoff,1980.
    [7]
    Arnold L,Papanicolaou G,Wihstutz V.Asymptotic analysis of the Lyapunov exponentsand rotation numbers of the random oscillator and applications[J].SIAM J Appl Math,1986,46(3):427~450.
    [8]
    Arnold L.Lyapunov exponents of nonlinear stochastic systems[A].In:F Ziegler,GI Schuellereds.Nonlinear Stochastic Dynamic Engrg Systems,Berlin,New York:Springer-Verlag,1987,181~203.
    [9]
    Arnold L,Boxler P.Eigenvalues,bifurcation and center manifolds in the presence of noise[A].In:CM Dafermos,G Ladas,G.Papannico laoueds.Differential Equations[M].New York:Marcel Dekker Inc,1990,33~50.
    [10]
    Ariaratnam S T,Xie W C.Sensitivity of pitchfork bifurcation to stochastic perturbation[J].Dyna & Stab Sys,1992,7(3):139~150.
    [11]
    Ariaratnam S T,Xie W C.Lyapunov exponents and stochastic stability ofcoupled linearsystems underrealnoise excitation[J].ASME J Appl Mech,1992,59(3):664~673.
    [12]
    Ariaratnam S T,Xie W C.Lyapunov exponents and stochastic stability of two-dimensional parametrically excited random systems[J].ASME J Appl Mech,1993,60(5):677~682.
    [13]
    Kozin F.Stability of the Linear Stochaxtic Systems[M].Lecture Notes in Math,294.New York:Springer-Verlag,1972,186~229.
    [14]
    Namachchivaya Sri N,Ariaratnam S T.Stochastically perturbed Hoph bifurcation[J].Int J Nonlinear Mech,1987,22(5):363~373.
    [15]
    Namachchivaya Sri N.Stochastic stability of a gyropendulum underrandom verticalsup portexcitation[J].J Sound & Vib,1987,119(2):363~373.
    [16]
    Namachchivaya Sri N.Hopf bifurcation in the presence of both parametric and externalstochastic excitation[J].A S M E J Appl Mech,1998,55(4):923~930.
    [17]
    Namachchivaya Sri N,Talwar S.Maximal Lyapunov exponent and rotation number forst ochastically peturbed codimension two bifurcation[J].J Sound & Vib,1993,169(3):349~372.
    [18]
    刘先斌,陈虬,陈大鹏.白噪声参激 Hopf 分岔系统的两次分岔研究[J].应用数学和力学,1997,18(9):779~788.
    [19]
    刘先斌,陈虬.实噪声参激Hopf分岔系统研究[J].力学学报,1997,29(2):158~166.
    [20]
    刘先斌,陈虬,孙训方.白噪声参激一类余维2分岔系统研究[J].力学学报,1997,29(5):563~572.
    [21]
    Pardoux E,Wihstutz V.Lyapunov exponentand rotation number of two imensionallinear stochastic systems with small diffusion[J].SIAM J Appl Math,1988,48(2):442~457.
    [22]
    朱位秋.随机振动[M].北京:科学出版社,1992.
    [23]
    Roy R V.Stochastic averaging of oscillators excited by coloured Gaussian processes[J].Int J Nonlinear Mech,1994,29(4):461~475.
    [24]
    Dygas M M K,Matkowsky B J,Schuss Z.Stochastic stability of nonlinear oscillators[J].SIAM J Appl Math,1988,48(5):1115~1127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2692) PDF downloads(652) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return