Gao Cunfa, Fan Weixun. A Exact Solution of Crack Problems in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 1999, 20(1): 47-54.
Citation: Gao Cunfa, Fan Weixun. A Exact Solution of Crack Problems in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 1999, 20(1): 47-54.

A Exact Solution of Crack Problems in Piezoelectric Materials

  • Received Date: 1997-09-12
  • Rev Recd Date: 1998-10-03
  • Publish Date: 1999-01-15
  • An assumption that the normal component of the electric displacement on crack faces is thought of as being zero is widely used in analyzing the fracture mechanics of piezoelectric materials. However, it is shown from the available experiments that the above assumption will lead to erroneous results. In this paper, the two-dimensional problem of a piezoelectric material with a crack is studied based on the exact electric boundary condition on the crack faces. Stroh formalism is used to obtain the closed-form solutions when the material is subjected to uniform loads at infinity. It is shown from these solutions that:(ⅰ) the stress intensity factor is the same as that of isotropic material, while the intensity factor of the electric displacement depends on both material properties and the mechanical loads, but not on the electric load. (ⅱ) the energy release rate in a piezoelectric material is larger than that in a pure elastic-anisotropic material, i e, it is always positive, and independent of the electric loads. (ⅲ) the field solutions in a piezoelectric material are not related to the dielectric constant of air or vacuum inside the crack.
  • loading
  • [1]
    Parton V Z.Fracture mechanics of piezoelectric materials[J].Acta Astronautic,1976,3(9):671~683
    Pak Y E.Crack extension force in a piezoelectric material[J].ASME J Appl Mech,1990,57(3):647~653
    Suo Z,Kuo C M,Barnett D M,Willis J R.Fracture mechanics for piezoelectric ceramics[J].J Mech Phys Solids,1992,40(4):739~765
    Sosa H A.On the fracture mechanics of piezoelectric solids[J].Int J Solids Structures,1992,29(21):2613~2622
    Pak Y E.Linear electro-elastic fracture mechanics of piezoelectric materials[J].Int J Fracture,1992,54(1):79~100
    Pak Y E,Tobin A.On electric field effects in fracture of piezoelectric materials[J].AMD-Vol,161/MD-Vol.42,Mechanics of Electromagnetic Materials and Structure,ASME,1993,51~62
    Sosa H A.Crack problems in piezoelectric ceramics[J].AMD-Vol.161/MD-Vol.42,Mechanics of Electromagnetic Materials and Structure,ASME,1993,63~75
    Dunn M L.The effect of crack face boundary conditions on the fracture mechanics of piezoelectric solids[J].Eng Fracture Mech,1994,48(1):25~39
    Park S B,Sun C T.Effect of electric field on fracture of piezoelectric ceramic[J].Int J Fracture,1995,70(3):203~216
    Beom H G,Atluri S N.Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media[J].Int J Fracture,1996,75(2):163~183
    Zhang T Y,Tong P.Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J].Int J Solids Structures,1996,33(3):343~359
    Kogan L,Hui C Y,Molkov V.Stress and induction field of a spheroidal inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material[J].Int J solids Structures,1996,33(19):2719~2737
    Yu S W,Qin Q H.Damage analysis of thermopiezoelectric properties:Part Ⅰ-Crack tip singularities[J].Theor Appl Fract Mech,1996,25(3):263~277
    Qin Q H,Yu S W.An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials[J].Int J Solids Structures,1997,34(5):581~590
    Sosa H A,Khutoryansky N.New developments concerning piezoelectric materials with defects[J].Int J Solids Structures,1996,33(23):3399~3414
    Chung M Y,Ting T C T.Piezoelectric solids with an elliptic inclusion or hole[J].Int J Solids Structures,1996,33(23):3343~3361
    Suo Z.Singularities,interfaces and cracks in dissimilar anisotropic media[J].Proc R Soc Lond,1990,A427:331~358
    20 Lothe J.Integral formalism for surfact waves in piezoelectric crystals:Existence considerations[J].J Appl Phys,1976,47(5):1799~1807
    Muskhelishvili N I.Some Basic Proelems of Mathematical Theory of Elasticity[M].Leyden:Noordhoof,1975
    Wangsness R K.Electromagnetic Fields[M].New York:John Wiley & Sons,1979.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2269) PDF downloads(718) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint