Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)[J]. Applied Mathematics and Mechanics, 1997, 18(3): 211-216.
 Citation: Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)[J]. Applied Mathematics and Mechanics, 1997, 18(3): 211-216.

# Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)

• Publish Date: 1997-03-15
• In this paper, a boundary element method for siolving dynamical response of viscoelastic thin plate is given In Laplace domain, we propose two methods to approximate the fundamental solution and develop the corresponding boundary element method Then using the improved Bellman's numerical inversion of the Laplace transform, the solution of the original problem is obtained. The numerical results show that this method has higher accuracy and faster convergence.
•  [1] 孙炳南等,二维粘弹性结构动力响应的边界元方法分析,上海力学,11(1) (1990), [2] 孙炳南等,多相粘弹性结构的动力响应边界元分析,计算结构力学及其应用,7(3) (1990),19-21. [3] 杨挺青等,粘弹性基支粘弹性板轴对称问题的动力响应,力学学报,22(2) (1990). [4] 顾萍等,动力边界元法的正交多项式函数的近似基本解研究,计算结构力学及其应用,1(4),(1990) [5] F. Durbin, Numberical inversion of Laplace transform: An efficient improvement to Dubher and Abate's method, The Computer Journal, 17 (1974), 371~376. [6] M. K. Miller and W. T. Guy, Numerical inversion of the Laplace transform by use ofJacobi polynomials, SIAM J. Nulner. Anal., 3, 4 (1966), 624~635. [7] R. Bellman, R. E. Kalaba and J. Lockett, Numerical Inversion of the Laplace Trans form Amer. Elsevier Publ. Co. (1966). [8] C. A. Brebbia, Boundary Element Techniques: Theory and Applications in Engineering,Springer-Verlag (1984).

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142