Liu Xiaobing, Cheng Liangjun. Lagrangian Model on the Turbulent Motion of Small Solid Particle in Turbulent Boundary Layer Flows[J]. Applied Mathematics and Mechanics, 1997, 18(3): 277-284.
Citation: Liu Xiaobing, Cheng Liangjun. Lagrangian Model on the Turbulent Motion of Small Solid Particle in Turbulent Boundary Layer Flows[J]. Applied Mathematics and Mechanics, 1997, 18(3): 277-284.

Lagrangian Model on the Turbulent Motion of Small Solid Particle in Turbulent Boundary Layer Flows

  • Received Date: 1995-06-09
  • Rev Recd Date: 1996-10-30
  • Publish Date: 1997-03-15
  • The Lagrangian equations of motion of small solid particle in turbulent boundary layer flows, taking into account the effects of the drag force caused by the wall presence, the Saffman and the Magus lift forces et al., is studied. Using the spectral method. anavtical expressions relating to the Lagrangian power spectra of particle velocity to that of the fluid are dereloped and the results are used to evaluate rarious response statistics. In this paper, the results clearly show that the turbulent diffusivity of the particle may be larger than that of fluid for a period of long-time.
  • loading
  • [1]
    P. C. Saffinan. The lift on a small sphere in a slow shear flow. J. Flund Mech. 22 (1965),335~341.
    [2]
    P. C. Saffman, Corrigendum to 'The Lift on a Small Sphere in a Slow Shear Flow, J.Fluid Mech., 31 (1968), 624.
    [3]
    S. I. Rubinow and J. B. Keller. The transverse force on a spinning sphere moving in aviscons fluid, J. Fluid Mech. 11 (1961), 447~459.
    [4]
    P. O. Rouhiainen and J. W. Stachiewiz On the deposition of small particles fromturbulent streams, J. Heat Transfer, 92 (1970), 19~177.
    [5]
    M. A. Rizk and S. E. Elghobashi. The motion of a sphereical particle suspended in aturbulent flow near a plane wall. Phys. Fluids, 28, 3 (1985), 806~811.
    [6]
    刘小兵等,用Lagrange方法分析固体颗粒在湍流场中的运动,华中理工大学学报,22(10)(1994), 1-6.
    [7]
    刘小兵、程良骏,水涡轮机械中的颗粒运动,华中理工大学学报,22(1) (1994), 10-16,
    [8]
    刘小兵,水涡轮机械中门固液两相流动及磨损研究,博士学位论文,华中理工大学(1995).
    [9]
    H. Faxen. Ark. Mat. Astr Fys. 17 (1923), 1~6.
    [10]
    H. Brenner. The slow motion of a sphere through a fluid towards a plane surface, Chem.Engng. Sci,, 16 (1961), 242~251.
    [11]
    A. D. Maude, End effects in a falling-sphere viscometer, Br. J. Appl. Plrys., 12 (1961),293~295.
    [12]
    J. O. Hinze, Turbulence, 2nd E:D., McGraw-Hill, New York (1975).
    [13]
    F. N. Frenkiel, J. AeronauI. Sci, 15 (1964), 57~65.
    [14]
    J. Laufer, The structure of turbulence in fully developed pipe flow, NACA ReporI, 1174,1~18.
    [15]
    V. W. Goldschmit et al., Turbulent diffusion of small particles suspended in turbulentjets, Prog. Heat Mass Transfer, 6 (1972), 487~509.
    [16]
    G. Gouesbet et al., Dispersion of discrete particle by continuous turbulent motions,Phys. Fluids, 27 (1984), 827~837.
    [17]
    A. Picart et al., Modelling and predicting turbulence field and the disperion of discreteparticles transported by turbulent flows, Int. J. Multiphase Flow., 12 (1986), 237~261
    [18]
    P. Desjonuers, Dispersion of discrete particles by continuous turbulent motions: Newresults and discussions, Phys. Fluids. 29 (1986), 2147~2151.
    [19]
    H. Ounis and G. Ahmadi, Analysis of dispersion of small spherical particles in a randomvelocity field, J. Fluid Eng.. 112 (1990), 114~120.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2289) PDF downloads(601) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return