Liang Haoyun. Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 889-894.
 Citation: Liang Haoyun. Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 889-894.

# Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C

• Publish Date: 1996-10-15
• The present paper spreads the principal axis intrinsic method to the high dimensional case and discusses the solution of the tensor equation AX-XA=C.
•  [1] R.Hill,Aspects of invariance in solid mechanics,Adr.in Appl.Mech.,18,1 (1978). [2] 郭仲衡,R,N,Dubey,非线性连续介质力学中的"主轴法",力学进展.13(1) (1.683). [3] Guo Zhongheng,Rates of stretch tensors,J.Elasticity,14 (1984),263. [4] 梁浩云,从主轴表示到抽象表示,力学进展;20(3) (1990),303. [5] 梁浩云,连续介质基本主标架旋率的绝对表示,应用数学和力学,12(1) (1991),39. [6] 梁浩云,《主轴法的近期进展》,兰州大学出版社(1991). [7] 郭仲衡,TH.Lehmann,伸缩张量率的抽象表示,力学学报,23(6) (1991),712. [8] Guo Zhongheng,Th.Lehmann,Liang Haoyun and Chi-sing Man,Twirl tensors and the tensor equation AX-XA=C,J.Elasticity,27 (1992),227. [9] Guo Zhongheng,Th.Lehmann and Liang Haoyun,Further remarks on stretch tensors,Transactions of the CSME,15,2 (1991),161. [10] Th.Lehmann,Guo Zhongheng and Liang Haoyun,The conjugacy between Cauchy stress and logarithm of the left stretch tensor,Eur.J.Mech.,A/Solids,10,4 (1991),395. [11] Th.Lehmann and Liang Haoyun,The stress conjugate to logarithmic strain InV.,ZAMM,73,12(1993),357. [12] 郭仲衡,连续介质的自旋和伸长率标架旋率,应用数学和力学,9(12) (1988), 1045-1048. [13] 程莉、黄克智,固化物质导数与标架旋率,力学学报,19 (1987),524. [14] A.Hoger and D.E.Carlson,On the derivative of the square root of a tensor and Guo's rate theorem,J.Elasticity.14,3 (1984),329. [15] M.Wedderburn,On the linear matrix equation,Proc.Edinburgh Math.Soc.,22(1904),49. [16] D.E.Rutherford,On the solution of the matrix equation AX-XB=C,Nederl.Akad.Wtensch.Proc.,Ser.A,35 (1932),53. [17] W.E.Roth,The equations AX-YB=C and AX-XB=C in matrices,Proc.Rarer.Math.Soc.,3(1952),392. [18] M.Rosenblum,On the operator equation BX-XA=Q,Duke Math.J.,23 (1956),263. [19] Ma Er-chieh,A finite series solution of the matrix equation AX-XB=C,SIAM J.Appl.Math.,14(1966),490. [20] R.A.Smith,Matrix equation XA+BX=C,SIAM J.Appl.Math.,16 (1968),198. [21] A.Jameson,Solution of the equation AX+XB=C by inversion of a M × M or N × N matrix,SIAM J.Appl.Math.,16 (1968),1020. [22] P.Lancaster,Explicit solution of linear matrix equation,SIAM Rev.,12(1970),544. [23] P.C.Muller,Solution of the matrix equation AX+XB=-Q and STX-XS=-Q*.SIAM J.Appl.Math.,18 (1970),682. [24] V.Kucera,The matrix equation AX+XB=C,SIAM J.Appl.Math.,26 (1974),15. [25] A.J.M.Spencer,Theory of invariants,in Continuum Physics,Ed.by A.C.Eringen.Vol.1,Academic Press,New York (1971),239-353.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142