Chen Yuming, Xiao Heng, . The Linear Bi-Spatial Tensor Equation φijAiXBj=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 919-926.
Citation: Chen Yuming, Xiao Heng, . The Linear Bi-Spatial Tensor Equation φijAiXBj=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 919-926.

The Linear Bi-Spatial Tensor Equation φijAiXBj=C

  • Received Date: 1996-02-16
  • Publish Date: 1996-10-15
  • A linear bi-spatial tensor equation which contains many of ten encotuntered equations as particular cases is thoroughly studied Explicit solutions are obtained. No conditions on eigenvalues of coefficient tensors are imposed.
  • loading
  • [1]
    M, Wedderburn,Note on the linear matriz equation, Proc, Edirtgburgh Math,Soc.,22 (1904),49-53.
    D,Z,Rutherford, On the solution of the matriz equation AX+XB=C,Nederl,Wetensch, Proc.,Ser,A,35(1932),53-59.
    W,E, Roth,The equation AX-YB=C and AX-XB=C in matrices, Proc,Amer,Math, Soc.,3(1952),392-396.
    M,Rosenblum,On the operator equation BX-XA=Q,Duke Math,J.23 (1956),263-270
    G, Lumer and M, Rosenblum, Linear operator equations, Proc,Amer, Math,Soc.,10 (1959),32-41.
    Ma Er-chieh, A finite series solution of the matrix equation AX-XB=C,SIAM J,Appl,Math.,14 (1966),490-495.
    R.A,Smith,Matrix equation XA+BX=C,SIAM J.Appl,Math.,16(1968),198-201.
    A.Jameson, Solution of the equation AX+XB=C by inversion of a MXM or NXN matrix SIAM J, Appl, Math.,16(1968),1020-1023.
    M, Rosenblum, The operator equation BX-XA=Q with selfadjoint A andB,Proc,Amer,Math,Soc.,20 (1969),115-120.
    P, Lancaster, Explicit solutions of linear matrix equations, SIAM Reviews,12 (1970),544-566.
    P,C, Müiller,Solution of the matrix equation AX+XB=-Q and STX+XS=-Q,SIAM J,Appl,Math.,18 (1970),682-687.
    R.E, Hartwig, Resultants and the solution of AX-XB=C,SIAM J,AppI,Math.,23 (1972),104-117.
    R.H, Bartels and G,W.Stewart,Solution of the equation AX+XB=C,Comm,ACM,15(1972),820-826.
    V,Kucěra,The matrix equation AX+XB=C,SIAM J.Appl, Math.,26(1974),15-25.
    W.T.Vetter,Vector structures and solutions of linear m atria equations,Linear Algebra Appl.,10(1975),181-1889.
    J.Z,Hearson,Nonsingular solutions of TA-BT=C.Linear Algebra Appl.,16 (1977),57-83.
    A, Bickart, Direct solution method for A1<.sub>E+EA2=-D, IEEE Trans, Auto.Control, 22(1977),467-471.
    H,Flanders and H.K, Wimmei, On the matrix equations AX-XB=C and AX-YB=C,SIAM J,Appl,Math.,32(1977),707-710.
    G.H, Golub,S Nash and C.Van Loan, A Hessenberg-Schur method for the matrix problem AX+XB=C,IEEE Trans.Auto.Control AC 24 (1979),909-913.
    S,P, Bhattacharyya and E, Desouta, Controllability,observability and the solution of AX-XB=C,Linear Algebra Appl.,39 (1981),16 7-188.
    J,R.Magnus, L-structured matrices and linear matrix equations,Linear and Mulfilinear Algebra, 14 (1983),67-88
    B,N, Datta and K, Datta, The matrix equation XA=ATX and an associated algorithm for solving the inertia and stability problems,Linear Algebra Appl.,87(1987),103-119.
    J.H Bevis. F,J. Hall and R.E, Hariwig, The matrix equation Ax-XB=C and its special cases,SIAM J.Matrix Anal,Appl,9(1988),348-359.
    K,Datta,Thematrix equation XA-BX=R and its applications,Linear Algebra Appl.109(1988),91-105.
    高维新,矩阵方程AX-XB=C的连分式解法,中国科学,A辑,(6) (1988),576-584.
    F, Rotella and P, Borne, Explicit solution of Sylvester and Lyapunov equations, Math, Comput, Simulation, 31(1989),27-1281.
    P.S,Szczepaniak, A contribution to matrix equations arising in system theory, Math,Meth.Appl,Sci.,15 (1992),593-597.
    Guo Zhongheng, Th, Lehmann, Liang Haoyun and C,-S,Man,Twirl tensors and the tensor equation AX-XA=C,T.Elasticity,27 227-245.(1992).
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2154) PDF downloads(452) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint