Mu Xiaowu. Geometric Framework and Minimal Realizations of Nonlinear Systems on Fibre Bundle[J]. Applied Mathematics and Mechanics, 1996, 17(10): 939-950.
Citation: Mu Xiaowu. Geometric Framework and Minimal Realizations of Nonlinear Systems on Fibre Bundle[J]. Applied Mathematics and Mechanics, 1996, 17(10): 939-950.

Geometric Framework and Minimal Realizations of Nonlinear Systems on Fibre Bundle

  • Received Date: 1996-03-20
  • Publish Date: 1996-10-15
  • The definition of nonlinear control sysms on fibre bundles proposed by Brockett and Willems is incomplete from the mathematical view geometric framework is proposed and a minimal realization theory is developed for nonlinear control systems on fibre bundles which is elaborated as a natural generalization of Sussmann's theory and differs essentially from Van der Schaft's approach. Limitations of realization theory given by Van der Schaft are also discussed.
  • loading
  • [1]
    R.W, Brockett, Control Theory and Analytical Mechanics,Geometrical Control Theory, Ed, by C. Martin and R, Hermann, Math, Sci, Press (1977).
    [2]
    R.W, Brockett, Nonlinear control theory and differential geometry,Proceeding of the International Congress of Mathematicans, August 16-24, 1983,Warszawa(1983).
    [3]
    H, Nijmeijer and A,J.Van der Schaft, Nonlinear Dynamical Control Systems,Springer-Verlag(1990).
    [4]
    J.C, Willems, Systems theoretic models for the analysis of physical systems,Ricerche di Automatics (special issue on systems),10(2)(1979).
    [5]
    A,J.Van der Schaft,System theoretic descriptions of physical systems, Doct.Dissertation, University of Groningen(1983).
    [6]
    H, Nijimeijer and A. T.Van dcr Schaft, Controlled invariance for nonlinear systems, IEEE Trans.Auto,Control, AC-27(4)(1982).
    [7]
    H, Nijimeijer, On the theory of nonlinear control systems, Lectures Notes in Control&Informetions, (135), Springer-Verlag(1989).
    [8]
    A,J.Van der Schaft,Controllability a,nd observability.for aftinc nonlinear Hamiltonian systems,IEEE Trans, Auto, Control, AC-27 (1982), 490-492.
    [9]
    H,J.Sussmann.E} is fence&uniqueness of minimal relizations of nonlinear systems,Math,Sys,Theory, 10(1977),263-284.
    [10]
    H,J, Sussmann, Orbits of families of vector fields and integrability of distributions,Trans.Amer, Math, Society, 180 (1973), 171-188.
    [11]
    R, Hermann and A, T, Krener, Nonlinear controllability and observability,IEEE,Traus,Auto,Control,AC-22(5) (1977).
    [12]
    H,J.Sussmann, Lie brackets,real analyticity and geometric control,Progress in Math.,Differential Geometric Control Theory, MA Birkhauser (1983).
    [13]
    H.J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J.Diff.Equ.,12 (1972).
    [14]
    慕小武,一般非线性控制系统和力学控制系统的统一纤维丛框架及其实现理论,北京大学博士学位论文(1991).
    [15]
    A, Isidori,Nonlinear Control Systems, 2nd ed. Springer-Yerlag(1989).
    [16]
    慕小武,纤维丛上一般非线性系统的能观性与能控性,《中国控制会议论文集》,科学出版社(1995).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2151) PDF downloads(461) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return