Zhang Shi-sheng, Zhang Yin. Section Theorems, Coincidence Theorems and Intersection Theorems on H-Spaces with Applications[J]. Applied Mathematics and Mechanics, 1993, 14(9): 763-774.
Citation: Zhang Shi-sheng, Zhang Yin. Section Theorems, Coincidence Theorems and Intersection Theorems on H-Spaces with Applications[J]. Applied Mathematics and Mechanics, 1993, 14(9): 763-774.

Section Theorems, Coincidence Theorems and Intersection Theorems on H-Spaces with Applications

  • Received Date: 1993-04-20
  • Publish Date: 1993-09-15
  • The purpose of this paper is to study the section theorems, coincidence theorems and intersection theorems on H-spaces. As a way of application, we use these results to study the existence problems of solutions for minimax inequalities and variational inequalities. The results presented in this paper improve and extend the corresponding results in [1, 3, 5, 6, 8, 9, 12, 14,15, 17].
  • loading
  • [1]
    Bardaro,C.and R.Ceppitelli,Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities,J.Math.Anal.Appl.,132(1988),484-490.
    [2]
    Bardaro,C.and R.Ceppitelli,Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities,J.Math.Anal.Appl.,137(1989),46-58.
    [3]
    Bardaro,C.and R.Ceppitelli,Fixed point theorems and vector valued minimax theorems,J.Math.Anal.Appl.,146(1990),363-373.
    [4]
    Browder,F.E.,The fixed point theory of multivalued mappings in topological vector spaces,Math.Ann.,177(1968),283-301.
    [5]
    Zhang Shih-sheng and Ma Yi-hai,Generalized KKM theorem on H-spaces with applications,J.Math.Anal.Appl,163,2(1992),406-421.
    [6]
    Chitra,A.and P.V.Subramanyam,A generalization of a section of Ky Fan and its applications to variational inequalities,Rev.of Research,Faculty of Science Univ.of Novi Sad,Math Series(1987),17-37.
    [7]
    Dugundji,J.and A.Granas,KKM maps and variational inequalities,Ann.Scuola Norm.Sup.Pisa,5(1978),679-682.
    [8]
    Fan,K.,A generalization of Tychonoffs fixed point theorem,Math.Ann.,142(1961),305-310.
    [9]
    Fan,K.,A minimax inequality and applications,in“Inequalities Ⅲ"(O.Shisha,Ed.),Academic Press,New York/London,(1972),103-113.
    [10]
    Fan,K.,Some properties of convex sets related to fixed point theorems,Math.Ann.,266(1984),519-537.
    [11]
    Granas A.,and Liu Fon-che,Coincidence for set-valued maps and minimax inequalities,J.Math.Pures et Appl.,65(1986),119-148.
    [12]
    Ha,C.W.,A noncompact minimax theorem,Pacific J.Math.,97(1981),115-117.
    [13]
    Horvath,C.,Some results on multivalued mappings and inequalities without convexity in“Nonlinear and Convex Analysis",Lecture Notes in Pure and Appl.Math.Series,107(1987),99-106.
    [14]
    Itoh,S.,W.Takahashi and K.Yanagi,Variational inequalities and complementarity problems,J.Math.Soc.Japan,30(1978),23-28.
    [15]
    Lassonde,M.,On the use of KKM multifunction in fixed point theory and related topics,J.Math.Anal.Appl.,97(1983),151-201.
    [16]
    Luxemburg,W.A.and A.C.Zaanen,Riesz Spaces I,North-Holland,Amsterdam/London,1971.
    [17]
    Yen,C.L.,A minimax inequality and its applications to variational inequalities,Pacific J.Math.,97(1981),477-481.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2014) PDF downloads(554) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return