| Citation: | Fu Xin-chu, Chou Huan-wen. Chaotic Behaviour of the General Symbolic Dynamics[J]. Applied Mathematics and Mechanics, 1992, 13(2): 103-109. | 
 
	                | [1] | Devaney,R.,An Introduction to Chaotic Dynamical Systems,Addison-Wesley Pubiishing Company,Inc,(1987). | 
| [2] | 傅新楚,非紧致符号空间上移位映射的Li-Yorke浑沌性态,非线性动力学研讨会交流论文,中国科技大学(1990). | 
| [3] | 傅新楚,自映射的无穷阶移位不变集,同上,并刊于《青年论文荟萃—常微分方程专辑》,科学出版社(1991). | 
| [4] | Wiggins,S,,Global Bifurcations and Chaos:Analytical Methods,Springer Verlag(1988). | 
| [5] | 张筑生,《微分动力系统原理》,科学出版社(1987). | 
| [6] | 郭友中、周焕文、分叉、怪引子、阵发性与浑沌,力学进展,14(3)(1984),255-274. | 
| [7] | Li,T,Y.and J.A,Yorke. Period three implies chaos,Amer. Math.Monthly,82(1975),985-992. | 
| [8] | 周作领.转移自映射的紊动性状,数学学报.30(2)(1979),284-288. | 
| [9] | 周作领,紊动与全紊动.科学通报,(4)(1987),248-250. | 
| [10] | Zhou,Z.L.(周作领).The topological Markov chain,Acta Math,Sinica(New Series),4(4)(1988),330-337. | 
