Yu Xin. A Non-Dualistic Unified Field Theory of Gravitation,Electromagnetism and Spin[J]. Applied Mathematics and Mechanics, 1990, 11(2): 95-109.
Citation: Yu Xin. A Non-Dualistic Unified Field Theory of Gravitation,Electromagnetism and Spin[J]. Applied Mathematics and Mechanics, 1990, 11(2): 95-109.

A Non-Dualistic Unified Field Theory of Gravitation,Electromagnetism and Spin

  • Received Date: 1989-02-01
  • Publish Date: 1990-02-15
  • The wisdom of classicalunified field theories in the conceptual framework of Weyl,Eddington,Einstein and Schrodinger has often been doubted and in particular there does not appear to be any empirical reason why the Einstein-Maxwell(E-MJ theory needs to be geometrized.The crux of the matter is,however not whether the E-M theory is aesthetically satisfactory but whether it answers all the modern questions within the classical context.In particular,the E-M theory does not provide a classical platform from which the Dirac equation can be derived in the way Schrodinger's equation is derived from classical mechanics via the energy equation and the Correspondence Principle.The present paper presents a non-dualistic unified field theory(UFT) in the said conceptual framework as propounded by M.A.Tonnelat.By allowing the metric form ds2=gμγdxγdxγ and the non-degenerate two-form F=(1/2t)φμγ dxγΛdxγ; to enter symmetrically into the theory we obtain a UFT which contains Einstein's General Relativity and the Born-Infeld electrodynamics as special cases.Above all,it is shown that the Dirac equation describing the electron in an "external" gravito-electromagnetic field can be derived from the non-dualistic Einstein equation by a simple factorization if the Correspondence Principle is assumed.
  • loading
  • [1]
    Milne,E.A.,Relativity,Gravitation and World Structure,Oxford(1935).
    [2]
    Eisenhart,L.P.and O.Veblen,The Riemann geometry and its generalization,Proc.Nat.Acad.Sci.,8(1922),19.
    [3]
    Jeans,J.H.,Mathematical Treatise on Electricity and Magnetism,Cambridge(1925).
    [4]
    Imbert,C,Phys.Rev.,D 5(1972),787.
    [5]
    De Groot,S.R.and L.G.Suttorp,Foundations of Electrodynamics,North Holland,Amsterdam(1972).
    [6]
    Einstein,A.and W.Mayer,Sitzber.Preuss.Akad.Wiss.(1931),541.
    [7]
    Penrose,R.and W.Rindler,Spinors and Spacetime,Vols.Ⅰ&Ⅱ,C.U.P.(1984).
    [8]
    Zakharov,A.,Doklady Acad.Nauk.SSR,177(1967),70.
    [9]
    Klein,D.,Nucl.Phys.,B21(1970),153.
    [10]
    Bleecker,D.,Variational Principles and Gauge Theory,W.A.Benjamin(1982).
    [11]
    Berestetskii,V.B.,E.M.Lifshitz and L.P.Piatevskii,Quantum Electrodynamics,Pergamon,Oxford(1975).
    [12]
    Eddington,A.S.,Mathematical Treatise on General Relativity,C.U.P.(1957).
    [13]
    Eddington,A.S.,Fundamental Theory,C.U.P.(1946).
    [14]
    Born,M.and L.Infeld,Proc.Roy.Soc.A.,144(1934),425.
    [15]
    余桑,一种经典时空理论(Ⅰ)—基础,应用数学和力学,8,12(1987)1051-1084.
    [16]
    Yu Xin,A geometric theory of the creation field and gravitation,Proc.Int.Symp.on Exp.Gravitational Physics,Guangzhou,P.R.C.,Aug.(1987);Published by World Scientific,Singapore(1988),197.
    [17]
    Vaidya,P.C.,Proc.Indian Acad.Sci.,A33(1951),264.
    [18]
    Carmeli,M.,Classical Fields,J.Wiley&Sons(1982).
    [19]
    Gurtler,R.and D.Hestenes,J.Math.Phys.,16(1975),573.
    [20]
    Synge,J.L.,General Relativity,North-Holland(1960).
    [21]
    Rindler,W.,Essential General Relativity,Springer-Verlag(1979).
    [22]
    Kobayashi,S.and K.Nomizu,Foundations of Differential Geometry,Vol.1,Interscience(1963).
    [23]
    Yu Xin,The Ω-field theory of gravitation and cosmology,Astrophysics and Space Science,154(1989),321.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1484) PDF downloads(444) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return