Fu Bao-lian, Li Nong. The Method of the Reciprocal Theorem of Forced Vibration for the Elastic Thin Rectangular Plates(Ⅰ)——Rectangular Plates with Four Clamped Edges and with Three Clamped Edges[J]. Applied Mathematics and Mechanics, 1989, 10(8): 693-714.
Citation: Fu Bao-lian, Li Nong. The Method of the Reciprocal Theorem of Forced Vibration for the Elastic Thin Rectangular Plates(Ⅰ)——Rectangular Plates with Four Clamped Edges and with Three Clamped Edges[J]. Applied Mathematics and Mechanics, 1989, 10(8): 693-714.

The Method of the Reciprocal Theorem of Forced Vibration for the Elastic Thin Rectangular Plates(Ⅰ)——Rectangular Plates with Four Clamped Edges and with Three Clamped Edges

  • Received Date: 1989-09-08
  • Publish Date: 1989-08-15
  • In this paper the method of the reciprocal theorem(MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts:(Ⅰ) rectangular plates with four damped edges and with three clamped edges;(Ⅱ) rectangular plates with two adjacent clamped edges;(Ⅲ) cantilever plates.We arc going to publish them one after another.
  • loading
  • [1]
    Stanisic,M.M.,Dynamic response of a diagonal line-loaded rectangular plate,AIAA Journal,15,12(1977).
    [2]
    Gorman,D.J.,Dynamic response of a rectangular plate to a bending moment distributed along the diagonal,AIAA Journal.20,11(1982).
    [3]
    Dill,E.H.and K.S.Pister,Vibration of rectangular plate and plate systems,Proceedings of the third U.S.National Congress of Applied Mechanics(1958).
    [4]
    Susemih,E.A and P.A.A.Laura,Forced vibration of thin elastic rectangular plate with edges elastically restrained against rotation,Journal of Ship Research,21,1(1977),24-29.
    [5]
    Donaldson,B.K.,A new approach to the forced vibration of thin plates.Journal of Sound and Vibration 30,4(1973),397-417.
    [6]
    Новадкий В.,Динамика Сооружений,Леревод с Лолвского(1967)
    [7]
    张福范,《弹性薄板》,第二版,科学出版社(1981).
    [8]
    曹国雄,《弹性矩形薄板振动》,中国建筑出版社(1983).
    [9]
    付宝连,一个求解位移方程的新方法,东北重型机械学院第三届学术交流会(1981)
    [10]
    付宝连,应用功的互等定理求解复杂边界条件矩形板的挠曲面方程,应用数学和力学,3,3(1982),315-325
    [11]
    付宝连,关于功的互等定理与迭加原理的等犷性,应用数学和力学,6,9(1985),813-818.
    [12]
    付宝连,应用功的互等定理计算矩形弹性薄板的自然频率,应用数学和力学,6,11(1985),985-998
    [13]
    朱雁滨、付宝连,再论在一集中载荷作用下悬臂矩形板的弯曲,应用数学和力学,7,10(1986),917-928
    [14]
    付宝连,关于求解弹性力学平面问题的功的互等定理法,应用数学和力学,10,5(1989),437-446.
    [15]
    付宝连,应用功的互等定理法求立方体的位移解,应用数学和力学,10,4(1989),297-308.
    [16]
    李农、付宝连,应用功的互等定理计算弹性圆薄板挠曲面方程,应用数学和力学,8,9(1988),836-842.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2171) PDF downloads(615) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return