LI Jing-jing, CHENG Chang-jun. Differential Quadrature Method for Bending of Orthotropic Plates With Finite Deformation and Transverse Shear Effects[J]. Applied Mathematics and Mechanics, 2004, 25(8): 801-808.
 Citation: LI Jing-jing, CHENG Chang-jun. Differential Quadrature Method for Bending of Orthotropic Plates With Finite Deformation and Transverse Shear Effects[J]. Applied Mathematics and Mechanics, 2004, 25(8): 801-808.

# Differential Quadrature Method for Bending of Orthotropic Plates With Finite Deformation and Transverse Shear Effects

• Rev Recd Date: 2004-04-16
• Publish Date: 2004-08-15
• Based on the Reddy's theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature method of nonlinear analysis to the problem was presented. DQWB approach was extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated. Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant.
•  [1] Chia C Y.Geometrically nonlinear behavior of composite plate: a review[J].Applied Mechanics Reviews,1988,41(2):439—451. [2] Reddy J N.A refined nonlinear theory of plates with transverse shear deformation[J].Internat J Solids and Structures,1984,20(9/10):881—896. [3] Reddy J N.Mechanics of Laminated Composite Plates[M].New York:CRC-Press,1997. [4] Shen H S.Nonlinear bending of shear deformable laminated plates under transverse and in-plane loads and resting on elastic foundations[J].Comput Struct,2000,50(2):131—142. [5] Shen H S.Postbuckling of shear deformable laminated plates under biaxial compression and lateral pressure and resting on elastic foundations[J].Int J Mech Sci,2000,42(6):1171—1195. [6] Bellmam R E，Casti J. Differential quadrature and long term integration[J].J Math Anal Appl，1971,34(2):235—238. [7] Bert C W, Malik M. Differential quadrature method in computational mechanics: a review[J].Applied Mechanics Reviews,1996,49(1):1—28. [8] Bert C W, Striz A G, Jang S K. Nonlinear bending of analysis of orthotropic rectangular plates by the method of differential quadrature[J].Comput Mech，1989,5(2):217—226. [9] Chen W, Shu C, He W,et al. The applications of special matrix products to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates[J].Comput Struct,2000,74(1):65—76. [10] Wang X, Bert C W.A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates[J].J Sound Vibration,1993,162(3):566—572. [11] Wang X, Bert C W. Differential quadrature analysis of deflection, buckling and free vibration of beams and rectangular plates[J].Comput Struct,1993,48(3):473—479. [12] LI Jing-jin, CHENG Chang-jun.Differential quadrature method for bending problem of plates with transverse shear effects[J].Journal of Shanghai University,2003,7(3):228—233. [13] Lancaster P, Timenetsky M. The Theory of Matrices With Applications[M].2nd ed. Orlando, FL:Academic Press，1985. [14] Bert C W, Wang X, Striz A G.Differential quadrature for static and free vibrational analyses of anisotropic plates[J].Int J Solids Struct,1993,30(13):1737—1744.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142