Citation: | GAO Zhi. Short- and Resonant-Range Interactions Between Scales in Turbulence and Their Applications[J]. Applied Mathematics and Mechanics, 2004, 25(8): 837-846. |
[1] |
是勋刚.湍流[M].天津:天津大学出版社,1994.
|
[2] |
Lumley J L.Whither turbulence? Turbulence at the crossroads[J].Lecture Notes in Physics,1989,357:313—374.
|
[3] |
Frish V, Orszag S A.Turbulence: challenges for theory and experiment[J].Physics Today,1990,10(1):23—32.
|
[4] |
Hinze J O.Turbulence[M].2nd Ed.New York:McGraw-Hill Book Co,1975.
|
[5] |
Domaradzki J A,Saiki E M.A subgrid-scale model based on the estimation of unresolved scales of turbulence[J].Phys Fluids,1997,9(7):2148—2164. doi: 10.1063/1.869334
|
[6] |
ZHOU Ye,Speziale C G.Advances in the fundamental aspects of turbulence: energy transfer, interacting scales, and self-preservation in isotropic decay [J].Appl Mech Rev,1998,51(4):267—301. doi: 10.1115/1.3099004
|
[7] |
GAO Zhi,ZHUANG Feng-gan.Time-space scale effects in computing numerically flowfields and a new approach to flow numerical simulation[J].Lecture Notes in Physics,1995,453:256—262.
|
[8] |
WANG Wei-guo,GAO Zhi,ZHUANG Feng-gan.A numerical comparison of the large and small scale (LSS) equations with the Navier-Stokes equations: the three dimensional evolution of a planar mixing layer flow[A].In:ZHUANG Feng-gan Ed.Proceedings of the International Symposium on Computational Fluid Dynamics[C].Beijing:International Academic Publisher,1997,484—490.
|
[9] |
高智.湍流计算的多尺度模型与尺度间相互作用规律[J].自然科学进展,2003,13(11):1147—1153.
|
[10] |
Hughes T J R,Mazze L,Oberai A A.The multiscale formulation of large eddy simulation: Decay of homogenous isotropic turbulence[J].Phys Fluids,2001,13(2):505—512. doi: 10.1063/1.1332391
|
[11] |
周光炯,严宗毅,许世雄,等.流体力学[M].第二版.北京:高等教育出版社,2000.
|