MENG Ze-hong, ZHANG Jian-jun. Nonlinear Krylov Subspace Methods for Solving Nonsmooth Equations[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1067-1075.
Citation: MENG Ze-hong, ZHANG Jian-jun. Nonlinear Krylov Subspace Methods for Solving Nonsmooth Equations[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1067-1075.

Nonlinear Krylov Subspace Methods for Solving Nonsmooth Equations

  • Received Date: 2003-07-13
  • Rev Recd Date: 2005-05-08
  • Publish Date: 2005-09-15
  • Newton-FOM algorithm and Newton-GMRES algorithm for solving nonsmooth equations are presented.It is proved that these Krylov subspace algorithms have locally quadratic convergence.Numerical experiments demonstrate the effectiveness of the algorithms.
  • loading
  • [1]
    QI Li-qun,SUN Ji-e.A nonsmooth version of Newton's method[J].Mathematical Programming,1993,58(3):353—367. doi: 10.1007/BF01581275
    [2]
    Clarke Frank H.Optimization and Nonsmooth Analysis[M].New York:Wiley,1983,69—70.
    [3]
    Harker Patrick T,XIAO Bai-chun.Newton's method for the nonlinear complementarity problem:a B-differentiable equation approach[J].Mathematical Progamming,1990,48(3):339—357. doi: 10.1007/BF01582262
    [4]
    IP Chi-ming,Kyparisis Jerzy.Local convergence of quasi-Newton methods for B-differentiable equations[J].Mathematical Progamming,1992,56(1):71—89. doi: 10.1007/BF01580895
    [5]
    Martinez José mario,QI Li-qun.Inexact Newton methods for solving nonsmooth equations[J].Journal of Computational and Applied Mathematics,1995,60(1/2):127—145. doi: 10.1016/0377-0427(94)00088-I
    [6]
    PANG Jong-shi,QI Li-qun.Nonsmooth equations: motivation and algorithms[J].SIAM Journal on Optimization,1993,3(2):443—465. doi: 10.1137/0803021
    [7]
    PANG Jong-shi.Newton's method for B-differentiable equations[J].Mathematical of Operations Research,1990,15(2):311—341. doi: 10.1287/moor.15.2.311
    [8]
    QI Li-qun.Convergence analysis of some algorithms for solving nonsmooth equations[J].Mathematical of Operations Research,1993,18(1):227—244. doi: 10.1287/moor.18.1.227
    [9]
    Brown Peter N.Local convergence theory for combined inexact Newton/finite-difference projection methods[J].SIAM Journal on Numerical Analysis,1987,24(2):407—433. doi: 10.1137/0724031
    [10]
    Brown Peter N,Saad Youcef.Convergence theory of nonlinear Newton-Krylov algorithms[J].SIAM Journal on Optimization,1994,4(2):297—330. doi: 10.1137/0804017
    [11]
    Brown Peter N,Saad Youcef.Hybrid Krylov methods for nonlinear systems of equations[J].SIAM Journal on Scientific Computing,1990,11(3):450—481. doi: 10.1137/0911026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2572) PDF downloads(872) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return